Skip to main content

Invisible Human Sensing in Smart Living Environments Using Capacitive Sensors

  • Chapter
  • First Online:
Ambient Assisted Living

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

Abstract

Smart Living environments aim at supporting their inhabitants in daily tasks by detecting their needs and dynamically reacting accordingly. This generally requires several sensor devices, whose acquired data is combined to assess the current situation. Capturing the full range of situations necessitates many sensors. Often cameras and motion detectors are used, which are rather large and difficult to hide in the environment. Capacitive sensors measure changes in the electric field and can be operated through any non-conductive material. They gained popularity in research in the last few years, with some systems becoming available on the market. In this work we will introduce how those sensors can be used to sense humans in smart living environments, providing applications in situation recognition and human-computer interaction. We will discuss opportunities and challenges of capacitive sensing and give an outlook on future scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook, D.J.: How smart is your home? Science (New York, NY) 335, 1579 (2012)

    Google Scholar 

  2. Cook, D., Das, S.: Smart Environments: Technology, Protocols and Applications. Wiley (2004)

    Google Scholar 

  3. Google Inc.: Google to Acquire Nest—Investor Relations—Google. http://investor.google.com/releases/2014/0113.html. Accessed 28 April 2016)

  4. Chen, B.X.: Samsung Acquires SmartThings, in Embrace of the Smart Home. http://bits.blogs.nytimes.com/2014/08/14/samsung-acquires-smartthings-in-embrace-of-the-smart-home/?_r=0. Accessed 28 April 2016

  5. Weiser, M.: The Computer for the 21st Century. Sci. Am. 265, 94–104 (1991)

    Article  Google Scholar 

  6. Streitz, N., Nixon, P.: The disappearing computer. Commun. ACM 48, 32–35 (2005)

    Article  Google Scholar 

  7. Adib, F., Mao, H., Kabelac, Z., Katabi, D., Miller, R.C.: Smart Homes that Monitor Breathing and Heart Rate. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837–846 (2015)

    Google Scholar 

  8. Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using wireless signals. In: Proceedings MobiCom. pp. 27–38 (2013)

    Google Scholar 

  9. Rus, S., Sahbaz, M., Braun, A., Kuijper, A.: Design factors for flexible capacitive sensors in ambient intelligence. In: Ambient Intelligence, pp. 77–92. Springer (2015)

    Google Scholar 

  10. Glinsky, A.: Theremin: Ether Music and Espionage. University of Illinois Press (2000)

    Google Scholar 

  11. Smith, J.R.: Electric field imaging. Ph.D. Dissertation, Massachusetts Institute of Technology (1999)

    Google Scholar 

  12. Braun, A., Schembri, I., Frank, S.: ExerSeat—sensor-supported exercise system for ergonomic microbreaks. In: Ambient Intelligence, pp. 1–16 (2015)

    Google Scholar 

  13. Braun, A., Frank, S., Wichert, R.: The capacitive chair. In: Proceedings DAPI (2015)

    Google Scholar 

  14. Braun, A., Majewski, M., Zander-Walz, S., Kuijper, A.: Curved—free-form interaction using capacitive proximity sensors (2015)

    Google Scholar 

  15. Haescher, M., Matthies, D.J.C., Bieber, G., Urban, B.: CapWalk : A Capacitive Recognition of Walking-Based Activities as a Wearable Assistive Technology, pp. 1–8

    Google Scholar 

  16. Kaila, L., Raula, H., Valtonen, M., Palovuori, K.: Living Wood—A Self-Hiding Calm User Interface, pp. 267–274

    Google Scholar 

  17. Janeiro, R. De Fuks, H.: Hairware: The Conscious Use of Unconscious Auto-contact Behaviors, pp. 78–86 (2015)

    Google Scholar 

  18. Singh, G., Nelson, A., Robucci, R., Patel, C., Banerjee, N.: Inviz : Low-power Personalized Gesture Recognition using Wearable Textile Capacitive Sensor Arrays

    Google Scholar 

  19. Nelson, A., Singh, G., Robucci, R., Patel, C., Banerjee, N.: Adaptive and Personalized Gesture Recognition using Textile Capacitive Sensor Arrays. IEEE Trans. Multi-Scale Comput. Syst., 1–1 (2015)

    Google Scholar 

  20. Braun, A., Wichert, R., Kuijper, A., Fellner, D.W.: Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ. 7, 1–28 (2015)

    Google Scholar 

  21. Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: OpenCapSense: A rapid prototyping toolkit for pervasive interaction using capacitive sensing. In: 2013 IEEE International Conference on Pervasive Computing and Communications, PerCom 2013, pp. 152–159 (2013)

    Google Scholar 

  22. Tapia, E.M.: Activity Recognition in the Home Setting Using Simple and Ubiquitous Sensors. Technology. LNCS, vol. 3001, pp. 158–175 (2004)

    Google Scholar 

  23. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. Commun. Surv. Tutorials, IEEE. 15, 1192–1209 (2013)

    Google Scholar 

  24. Mitchell, H.B.: Multi-sensor Data Fusion. Springer (2007)

    Google Scholar 

  25. Weichert, F., Bachmann, D., Rudak, B., Fisseler, D.: Analysis of the accuracy and robustness of the leap motion controller. Sensors 13, 6380–6393 (2013)

    Article  Google Scholar 

  26. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56, 116–124 (2013)

    Article  Google Scholar 

  27. Ono, M., Shizuki, B., Tanaka, J.: Touch & activate: adding interactivity to existing objects using active acoustic sensing. In: Proceedings UIST, pp. 31–40 (2013)

    Google Scholar 

  28. Rekimoto, J.: SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In: Proceedings CHI, pp. 113–120 (2002)

    Google Scholar 

  29. Wilson, A., Pham, H.: Pointing in intelligent environments with the worldcursor. In: Proceedings International Conference on Human Computer Interaction (2003)

    Google Scholar 

  30. Majewski, M., Braun, A., Marinc, A., Kuijper, A.: Providing visual support for selecting reactive elements in intelligent environments. Trans. Comput. Sci. XVIII. 7848, 248–263 (2013)

    Article  Google Scholar 

  31. Wilson, A., Benko, H., Izadi, S., Hilliges, O.: Steerable augmented reality with the beamatron. Proc, UIST (2012)

    Book  Google Scholar 

  32. Rus, S., Grosse-Puppendahl, T., Kuijper, A.: Recognition of Bed Postures Using Mutual Capacitance Sensing. In: Ambient Intelligence, pp. 51–66. Springer (2014)

    Google Scholar 

  33. Braun, A., Frank, S., Majewski, M., Wang, X.: CapSeat: capacitive proximity sensing for automotive activity recognition. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 225–232. ACM, New York, NY, USA (2015)

    Google Scholar 

  34. Braun, A., Heggen, H., Wichert, R.: CapFloor—A Flexible capacitive indoor localization system. In: Proceedings Evaluating AAL Systems Through Competitive Benchmarking. Indoor Localization and Tracking, pp. 26–35 (2012)

    Google Scholar 

  35. Braun, A., Zander-Walz, S., Krepp, S., Rus, S., Wichert, R., Kuijper, A.: CapTap—Combining Capacitive Gesture Recognition and Knock Detection. In Proceedings of the 3rd International Workshop on Sensor-based Activity Recognition and Interaction iWOAR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Braun, A., Rus, S., Majewski, M. (2017). Invisible Human Sensing in Smart Living Environments Using Capacitive Sensors. In: Wichert, R., Mand, B. (eds) Ambient Assisted Living. Advanced Technologies and Societal Change. Springer, Cham. https://doi.org/10.1007/978-3-319-52322-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52322-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52321-7

  • Online ISBN: 978-3-319-52322-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics