Skip to main content

Abstract

Human development is driven by an individual’s genetics. Alterations in genetic information may lead to abnormal growth and development, including abnormalities affecting reproductive potential. This chapter reviews several genetic disorders associated with gonadal dysfunction and their corresponding fertility preservation and restoration options. Special considerations are noted regarding genetic risk to future offspring and family members. Conditions highlighted in this chapter include ataxia-telangiectasia, fragile X-associated primary ovarian insufficiency, galactosemia, GAPO syndrome, and 22q11.2 deletion syndrome (aka DiGeorge syndrome).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chun H, Gatti R. Ataxia-telangiectasia, an evolving phenotype. DNA Repair. 2004;3(8-9):1187–96.

    Article  CAS  PubMed  Google Scholar 

  2. Swift M et al. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39:573–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Biton S, Barzilai A, Shiloh Y. The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst). 2008;7(7):1028–38.

    Article  CAS  Google Scholar 

  4. Perlman S, Becker-Catania S, Gatti R. Ataxia telangiectasia: a diagnosis and treatment. Semin Pediatr Neurol. 2003;10(3):173–82.

    Article  PubMed  Google Scholar 

  5. Swift M et al. Malignant neoplasms in the families of patients with ataxia-telangiectasia. Cancer Res. 1976;36(1):209–15.

    CAS  PubMed  Google Scholar 

  6. Morrell D, Chase C, Swift M. Cancers in 44 families with ataxia-telangiectasia. Cancer Genet Cytogenet. 1990;50:119–23.

    Article  CAS  PubMed  Google Scholar 

  7. Athma P, Rappaport R, Swift M. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet. 1996;92:130–4.

    Article  CAS  PubMed  Google Scholar 

  8. Easton D. Cancer risks in A-T heterozygotes. Int J Radiat Biol. 1994;66:S177–82.

    Article  CAS  Google Scholar 

  9. FitzGerald M et al. Heterozygous ATM mutations do not contribute to early onset breast cancer. Nat Genet. 1997;15:307–10.

    Article  CAS  PubMed  Google Scholar 

  10. Broeks A et al. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet. 2000;66:494–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renwick A et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38:873–5.

    Article  CAS  PubMed  Google Scholar 

  12. Jones K. Smith’s recognizable patters of human malformation. 6th ed. Philadelpia: Elsevier Saunders; 2006.

    Google Scholar 

  13. Zadik Z et al. Gonadal dysfunction in patients with ataxia telangiectasia. Acta Paediatr Scand. 1978;67(4):477–9.

    Article  CAS  PubMed  Google Scholar 

  14. Crawford D, Acuna J, Sherman S. FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med. 2001;3:359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crawford D et al. Prevalence of the fragile X syndrome in African-Americans. Am J Med Genet. 2002;110:226–33.

    Article  PubMed  Google Scholar 

  16. Strom C et al. Molecular testing for Fragile X Syndrome: lessons learned from 119,232 tests performed in a clinical laboratory. Genet Med. 2007;9:46–51.

    Article  CAS  PubMed  Google Scholar 

  17. Sullivan S, Welt C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29:299–307.

    Article  PubMed  Google Scholar 

  18. Monaghan KG et al. ACMG Standards and Guidelines for fragile X testing: a revision to the disease-specific supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics and Genomics. Genet Med. 2013;15(7):575–86.

    Article  CAS  PubMed  Google Scholar 

  19. Nolin S et al. Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. Am J Hum Genet. 2003;72(2):454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernandez-Carvajal I et al. Expansion of an FMR1 grey-zone allele to a full mutation in two generations. J Mol Diagn. 2009;11(4):306–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yrigollen C et al. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet Med. 2012;14(8):729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. American College of Obstetrics and Gynecologists. Carrier screening for fragile X syndrome. Committee opinion No. 469. Obstet Gynecol. 2010;116:1008–10.

    Article  Google Scholar 

  23. Pastore L, Morris W, Karns L. Emotional reaction to fragile X premuation carrier tests among infertile women. J Genet Couns. 2008;17(1):84–91.

    Article  PubMed  Google Scholar 

  24. Hagerman P, Hagerman R. The fragile-X premutation: a maturing perspective. Am J Hum Genet. 2004;74(5):805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sullivan A et al. Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod. 2005;20(2):402–12.

    Article  CAS  PubMed  Google Scholar 

  26. Ennis S, Ward D, Murray A. Nonlinear association between CGG repeat number and age of menopause in FMR1 premutation carriers. Eur J Hum Genet. 2006;14:153–5.

    Article  Google Scholar 

  27. De Caro J, Dominguez C, Sherman S. Reproductive health of adolescent girls who carry the FMR1 premutation: expected phenotype based on current knowledge of fragile X-associated primary ovarian insufficiency. Ann N Y Acad Sci. 2008;1135:99–111.

    Article  CAS  PubMed  Google Scholar 

  28. Nelson LM, Covington SN, Rebar RW. An update: spontaneous premature ovarian failure is not an early menopause. Fertil Steril. 2005;83(5):1327–32.

    Article  PubMed  Google Scholar 

  29. Sherman S, Pletcher B, Driscoll D. Fragile X syndrome: diagnostic and carrier testing. Genet Med. 2005;7(8):584–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Coss K et al. Classical Galactosaemia in Ireland: incidence, complications and outcomes of treatment. J Inherit Metab Dis. 2012;36:21–7.

    Article  PubMed  Google Scholar 

  31. Berry G, Elsas L. Introduction to the Maastricht workshop: lessons from the past and new directions in galactosemia. J Inherit Metab Dis. 2011;34:249–55.

    Article  PubMed  Google Scholar 

  32. van Erven B et al. Fertility preservation in female classic galactosemia patients. Orphanet J Rare Dis. 2013;8:107.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fridovich-Keil J et al. Ovarian function in girls and women with GALT-deficiency galactosemia. J Inherit Metab Dis. 2011;34:357–66.

    Article  CAS  PubMed  Google Scholar 

  34. Levy H. Reproductive effects of maternal metabolic disorders: implications for pediatrics and obstetrics. Turk J Pediatr. 1996;38:335–44.

    CAS  PubMed  Google Scholar 

  35. Levy H et al. Ovarian failure in galactosemia. N Engl J Med. 1984;310:50.

    CAS  PubMed  Google Scholar 

  36. Rubio-Gozalbo M et al. Gonadal function in male and female patients with classic galactosemia. Hum Reprod Update. 2010;16:177–88.

    Article  CAS  PubMed  Google Scholar 

  37. Morrow R et al. Ovarian failure in a young woman with galactosaemia. Ulster Med J. 1985;54:218–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson A et al. Hypergonadotrophic hypogonadism in classical galactosemia: evidence for defective oogenesis Case report. Br J Obstet Gynaecol. 1984;91:199–200.

    Article  CAS  PubMed  Google Scholar 

  39. Sauer M et al. Pregnancy after oocyte donation to a woman with ovarian failure and classical galactosemia. Fertil Steril. 1991;55:1197–9.

    Article  CAS  PubMed  Google Scholar 

  40. Gubbels C et al. Primary ovarian insufficiency in classic galactosemia: role of FSH dysfunction and timing of the lesion. J Inherit Metab Dis. 2013;36:29–34.

    Article  CAS  PubMed  Google Scholar 

  41. Gubbels C, Land J, Rubio-Gozalbo M. Fertility and impact of pregnancies on the mother and child in classic galactosemia. Obstet Gynecol Surv. 2008;63:334–43.

    Article  PubMed  Google Scholar 

  42. Tipton RE, Gorlin RJ. Growth retardation, alopecia, pseudo-anodontia, and optic atrophy--the GAPO syndrome: report of a patient and review of the literature. Am J Med Genet. 1984;19(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  43. Stranecky V et al. Mutations in ANTXR1 cause GAPO syndrome. Am J Hum Genet. 2013;92(5):792–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bayram Y et al. Whole exome sequencing identifies three novel mutations in ANTXR1 in families with GAPO syndrome. Am J Med Genet A. 2014;164A(9):2328–34.

    Article  PubMed  Google Scholar 

  45. Benetti-Pinto CL et al. GAPO syndrome: a new syndromic cause of premature ovarian insufficiency. Climacteric. 2016;19:1–5.

    Article  Google Scholar 

  46. Cancrini C et al. Clinical features and follow-up in patients with 22q11.2 deletion syndrome. J Pediatr. 2014;164(6):1475–80. e2

    Article  CAS  PubMed  Google Scholar 

  47. Grassi MS et al. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion. Arq Bras Cardiol. 2014;103(5):382–90.

    PubMed  PubMed Central  Google Scholar 

  48. Perez E, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr Opin Pediatr. 2002;14(6):678–83.

    Article  PubMed  Google Scholar 

  49. Shaikh TH et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000;9(4):489–501.

    Article  CAS  PubMed  Google Scholar 

  50. Yagi H et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362(9393):1366–73.

    Article  CAS  PubMed  Google Scholar 

  51. Driscoll DA. Prenatal diagnosis of the 22q11.2 deletion syndrome. Genet Med. 2001;3(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  52. Noel AC et al. Fetal phenotype associated with the 22q11 deletion. Am J Med Genet A. 2014;164A(11):2724–31.

    Article  PubMed  Google Scholar 

  53. Peters D et al. Noninvasive prenatal diagnosis of a fetal microdeletion syndrome. N Engl J Med. 2011;365(19):1847–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Srinivasan A et al. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am J Hum Genet. 2013;92(2):167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lau TK et al. Secondary findings from non-invasive prenatal testing for common fetal aneuploidies by whole genome sequencing as a clinical service. Prenat Diagn. 2013;33(6):602–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fernandez L et al. Comparative study of three diagnostic approaches (FISH, STRs and MLPA) in 30 patients with 22q11.2 deletion syndrome. Clin Genet. 2005;68(4):373–8.

    Article  CAS  PubMed  Google Scholar 

  57. Morcel K et al. Utero-vaginal aplasia (Mayer-Rokitansky-Kuster-Hauser syndrome) associated with deletions in known DiGeorge or DiGeorge-like loci. Orphanet J Rare Dis. 2011;6:9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Markert ML et al. Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants. Blood. 2007;109(10):4539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McDonald-McGinn DM, Zackai EH. Genetic counseling for the 22q11.2 deletion. Dev Disabil Res Rev. 2008;14(1):69–74.

    Article  PubMed  Google Scholar 

  60. Iwarsson E et al. Preimplantation genetic diagnosis of DiGeorge syndrome. Mol Hum Reprod. 1998;4(9):871–5.

    Article  CAS  PubMed  Google Scholar 

  61. Shefi S et al. Fish based preimplantation genetic diagnosis to prevent DiGeorge syndrome. J Assist Reprod Genet. 2009;26(7):411–3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goetsch, A.L., Kimelman, D., Woodruff, T.K. (2017). Genetic Disorders Associated with Gonadal Dysfunction. In: Fertility Preservation and Restoration for Patients with Complex Medical Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-52316-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52316-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52315-6

  • Online ISBN: 978-3-319-52316-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics