Skip to main content

Data Fusion for Evaluation of Woodland Parameters

  • Chapter
  • First Online:
  • 1678 Accesses

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 122))

Abstract

The airborne shooting provides different types of information including the Light Detection And Ranging (LiDAR) data, hyperspectral/multispectral/digital photography shooting data, and additional information about parameters of a shooting. The proposed generalized flowchart for data fusion of the airborne laser scanning, imaging spectroscopy, and imaging photography involves three levels of processing, i.e., a preprocessing level, a level of canopy modelling and evaluation, and a level of segmentation of individual trees, including the measurements and computation of indirect parameters. Data fusion promotes the accurate direct and indirect measurements. However, difficulties of image stitching because of the parallax effect lead to the distortions between the ground truth 3D LiDAR coordinates and 2D coordinates in imagery. The proposed method for fusion of the LiDAR and digital photography data provides an accurate segmentation of individual tree crowns in order to receive the reliable biomass measurements. The boundaries and textures were improved in optical images by application of shearlets and higher-order active contour model. This permits to evaluate tree crowns in a plane more accurately. The obtained area measurements of the tree crowns are promising and coincide with the expert estimations, providing the accuracy 92–96%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harding DL, Lefsky MA, Parker GG, Blair JB (2001) Laser altimeter canopy height profiles methods and validation for closed-canopy, broadleaf forests. Remote Sens Environ 76:283–297

    Article  Google Scholar 

  2. Vauhkonen J, Næsset E, Gobakken T (2014) Deriving airborne laser scanning based computational canopy volume for forest biomass and allometry studies. ISPRS J Photogramm Remote Sens 96:57–66

    Article  Google Scholar 

  3. Chen Q (2015) Modeling aboveground tree woody biomass using national-scale allometric methods and airborne LiDAR. ISPRS J Photogram Remote Sens 106:95–106

    Article  Google Scholar 

  4. Bortolota ZJ, Wynne RH (2005) Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data. ISPRS J Photogramm Remote Sens 59(6):342–360

    Article  Google Scholar 

  5. Carter J, Schmid K, Waters K, Betzhold L, Hadley B, Mataosky R, Halleran J (2012) National oceanic and atmospheric administration (NOAA) coastal services center. Lidar 101: an introduction to Lidar technology, data, and applications (Revised). NOAA Coastal Services Center, Charleston, SC

    Google Scholar 

  6. Holmgren J (2004) Prediction of tree height, basal area and stem volume using airborne laser scanning. Scand J For Res 19:543–553

    Article  Google Scholar 

  7. Popescu SC, Zhao KG (2008) A voxel-based LiDAR method for estimating crown base height for deciduous and pine trees. Remote Sens Environ 112(3):767–781

    Article  Google Scholar 

  8. Berni J, Zarco-Tejada P, Suarez L, Fererez E (2009) Thermal and narrow-band multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47:722–738

    Article  Google Scholar 

  9. Huang Y, Thomson SJ, HoffmannWC Lan Y, Fritz BK (2013) Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int J Agric Biol Eng 6(3):1–10

    Google Scholar 

  10. Yahyanejad S, Rinner B (2014) A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs. ISPRS J Photogramm Remote Sens 104:189–202

    Article  Google Scholar 

  11. Duro DC, Franklin SE, Dubé MG (2012) Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int J Remote Sens 33(14):4502–4526

    Article  Google Scholar 

  12. Bar Massada A, Kent R, Blank L, Perevolotsky A, Hadar L, Carmel Y (2012) Automated segmentation of vegetation structure units in a Mediterranean landscape. Int J Remote Sens 33(2):346–364

    Article  Google Scholar 

  13. Junttila V, Finley AO, Bradford JB, Kauranne T (2013) Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory. For Ecol Manage 292:75–85

    Article  Google Scholar 

  14. Yu X, Hyyppä J, Vastaranta M, Holopainen M (2011) Predicting individual tree attributes from airborne laser point clouds based on random forest technique. ISPRS J Photogramm Remote Sensing 66(1):28–37

    Article  Google Scholar 

  15. Fernández-Sarría A, Velázquez-Martí B, Sajdak M, Martínez L, Estornell J (2013) Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Comput Electron Agric 93:90–97

    Article  Google Scholar 

  16. Zhao K, Popescu S, Nelson R (2009) LiDAR remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sens Environ 113(1):182–196

    Article  Google Scholar 

  17. Hollaus M, Wagner W, Eberhöfer C, Karel W (2006) Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS J Photogramm Remote Sens 60(5):323–338

    Article  Google Scholar 

  18. Keylwerth R (1954) Ein beitrag zur qualitativen zuwachsanalyse. Holz als Rohund Werkstoff 12:41–44

    Article  Google Scholar 

  19. Côté JF, Fournier RA, Egli R (2011) An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ Model Softw 26(6):761–777

    Article  Google Scholar 

  20. Morsdorf F, Nichol C, Malthus T, Woodhouse IH (2009) Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens Environ 113:2152–2163

    Article  Google Scholar 

  21. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  Google Scholar 

  22. Maltamo M, Peuhkurinen J, Malinen J, Vauhkonen J, Packalén P, Tokola T (2009) Predicting tree attributes and quality characteristics of Scots pine using airborne laser scanning data. Silva Fennica 43(3):507–521

    Article  Google Scholar 

  23. Vastaranta M, Kankare V, Holopainen M, Yu X, Hyyppä J, Hyyppä H (2012) Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS J Photogramm Remote Sens 67:73–79

    Article  Google Scholar 

  24. Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans Geosci Remote Sens 39(5):969–975

    Article  Google Scholar 

  25. Yao W, Krzystek P, Heurich M (2012) Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens Environ 123:368–380

    Article  Google Scholar 

  26. Koch B, Heyder U, Weinacker H (2006) Detection of individual tree crowns in airborne LiDAR data. Photogramm Eng Remote Sens 72(4):357–363

    Article  Google Scholar 

  27. Ene L, Næsset E, Gobakken T (2012) Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. Int J Remote Sens 33(16):5171–5193

    Article  Google Scholar 

  28. Lee H, Slatton KC, Roth BE, Cropper WP Jr (2010) Adaptive clustering of airborne lidar data to segment individual tree crowns in managed pine forests. Int J Remote Sens 31(1):117–139

    Article  Google Scholar 

  29. Smits I, Prieditis G, Dagis S, Dubrovskis D (2012) Individual tree identification using different LiDAR and optical imagery data processing methods. Biosyst Inform Technol 1(1):19–24

    Article  Google Scholar 

  30. Strîmbu VF, Strîmbu BM (2015) A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS J Photogramm Remote Sens 104(2015):30–43

    Article  Google Scholar 

  31. Ferraz A, Bretar F, Jacquemoud S, Gonçalves G, Pereira L, Tomé M, Soares P (2012) 3-D mapping of a multi-layered mediterranean forest using ALS data. Remote Sens Environ 121:210–223

    Article  Google Scholar 

  32. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619

    Article  Google Scholar 

  33. Li W, Guo Q, Jakubowski MK, Kelly M (2012) A new method for segmenting individual trees from the LiDAR point cloud. Photogramm Eng Remote Sens 78(1):75–84

    Article  Google Scholar 

  34. Lu X, Guo Q, Li W, Jacob Flanagan J (2014) A bottom-up approach to segment individual deciduous trees using leaf-off LiDAR point cloud data. ISPRS J Photogramm Remote Sens 94:1–12

    Article  Google Scholar 

  35. Kim M, Warner TA, Madden M, Atkinson DS (2011) Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects. Int J Remote Sens 32:2825–2850

    Article  Google Scholar 

  36. Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K (2012) Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data. Landscape Ecol Eng 8:157–171

    Article  Google Scholar 

  37. Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2012) Image texture as a remotely sensed measure of vegetation structure. Remote Sens Environ 121:516–526

    Article  Google Scholar 

  38. Beguet B, Boukir S, Guyon D, Chehata N (2013) Modelling-based feature selection for classification of forest structure using very high resolution multispectral imagery. IEEE international conference on systems, man, and cybernetics SMC 2013, pp 4294–4299

    Google Scholar 

  39. Beguet B, Guyon D, Boukir S, Chehata N (2014) Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery. ISPRS J Photogramm Remote Sens 96:164–178

    Article  Google Scholar 

  40. Zhang J, Sohn G, Brédif M (2014) A hybrid framework for single tree detection from airborne laser scanning data: a case study in temperate mature coniferous forests in Ontario, Canada. ISPRS J Photogramm Remote Sens 98:44–57

    Article  Google Scholar 

  41. Kalliovirta J, Tokola T (2005) Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fennica 39(2):227–248

    Article  Google Scholar 

  42. Kankare V, Vauhkonen J, Tanhuanpää T, Holopainen M, Vastaranta M, Joensuu M, Krooks A, Hyyppä J, Hyyppä H, Alho P, Viitala R (2014) Accuracy in estimation of timber assortments and stem distribution—a comparison of airborne and terrestrial laser scanning techniques. ISPRS J Photogramm Remote Sens 97(2014):89–97

    Article  Google Scholar 

  43. Takahashi T, Yamamoto K, Senda Y, Tsuzuku M (2005) Estimating individual tree heights of Sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J Forest Res 10(2):135–142

    Article  Google Scholar 

  44. Véga C, Durrieu S (2011) Multi-level filtering segmentation to measure individual tree parameters based on LiDAR data: application to a mountainous forest with heterogeneous stands. Int J Appl Earth Obs Geoinf 13(4):646–656

    Article  Google Scholar 

  45. Vega C, Hamrouni A, El Mokhtari S, Morel J, Bock J, Renaud JP, Bouvier M, Durrieu S (2014) PTrees: a point-based approach to forest tree extraction from LiDAR data. Int J Appl Earth Obs Geoinf 33:98–108

    Article  Google Scholar 

  46. Khosravipour A, Skidmore AK, Wang T, Isenburg M, Khoshelham K (2015) Effect of slope on treetop detection using a LiDAR canopy height model. ISPRS J Photogramm Remote Sens 104:44–52

    Article  Google Scholar 

  47. Brandtberg T (2007) Classifying Individual tree species under leaf-off and leaf-on conditions using airborne LiDAR. ISPRS J Photogramm Remote Sens 61(5):325–340

    Article  Google Scholar 

  48. Polewski P, Yao W, Heurich M, Krzystek P, Stilla U (2015) Detection of fallen trees in ALS point clouds using a normalized cut approach trained by simulation. ISPRS J Photogramm Remote Sens 105:252–271

    Article  Google Scholar 

  49. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination—part I. Theories, sensors and hemispherical photography. Agri Meteorol 121:19–35

    Article  Google Scholar 

  50. Van der Zande D, Hoet W, Jonckheere I, van Aardt J, Coppin P (2006) Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agric For Meteorol 141(2–4):147–160

    Article  Google Scholar 

  51. Richardson JJ, Moskal LM, Kim SH (2009) Modeling approaches to estimate effective leaf area index from aerial discrete-return LiDAR. Agric For Meteorol 149(6–7):1152–1160

    Article  Google Scholar 

  52. Zheng G, Moskal LM (2009) Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors. Sensors 9:2719–2745

    Article  Google Scholar 

  53. Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ 114(4):911–924

    Article  Google Scholar 

  54. Vastaranta M, Wulder MA, White JC, Pekkarinen A, Tuominen S, Ginzler C, Kankare V, Holopainen M, Hyyppa J, Hyyppa H (2013) Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Can J Remote Sens 39(5):382–395

    Google Scholar 

  55. Torabzadeh H, Morsdorf F, Schaepman ME (2014) Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems—a review. ISPRS J Photogramm Remote Sens 97(2014):25–35

    Article  Google Scholar 

  56. Asner GP, Boardman J, Field CB, Knapp DE, Kennedy-Bowdoin T, Jones MO, Martin RE (2007) Carnegie airborne observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging (Wilder) for three-dimensional studies of ecosystems. J Appl Remote Sens 1(1):013536. doi:10.1117/1.2794018

    Article  Google Scholar 

  57. Yua X, Hyyppäa J, Vastaranta M, Holopainen M, Viitala R (2011) Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS J Photogramm Remote Sens 66(1):28–37

    Article  Google Scholar 

  58. Favorskaya M, Zotin A, Chunina A (2011) Procedural modeling of broad-leaved trees under weather conditions in 3D virtual reality. In: Tsihrintzis GA, Virvou M, Jain LC, Howlett RJ (eds) Intelligent interactive multimedia systems and services. Springer, Berlin

    Google Scholar 

  59. Song ZL, Zhang J (2010) Remote sensing image registration based on retrofitted SURF algorithm and trajectories generated from Lissajous figures. IEEE Geosci Remote Sens Lett 7(3):491–495

    Article  Google Scholar 

  60. Deshmukh MP, Bhosle U (2011) A survey of image registration. Int J Image Process 5(3):245–269

    Google Scholar 

  61. Favorskaya M, Petukhov N (2011) Recognition of natural objects on air photographs using neural networks. Optoelectron Instrum Data Process 47(3):233–238

    Article  Google Scholar 

  62. Lim WQ (2010) The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Proc 19(5):1166–1180

    Article  MathSciNet  Google Scholar 

  63. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1:321–331

    Article  MATH  Google Scholar 

  64. Rochery M, Jermyn IH, Zerubia J (2006) Higher order active contours. Int J Comput Vision 69(1):27–42

    Article  Google Scholar 

  65. De Vylder J, Ochoa D, Philips W, Chaerle L, Van Der Straeten D (2011) Leaf segmentation and tracking using probabilistic parametric active contours. In: Gagalowicz A, Philips W (eds) Mirage. Springer, Berlin

    Google Scholar 

  66. Jakubowski MK, Guo Q, Kelly M (2013) Tradeoffs between LiDAR pulse density and forest measurement accuracy. Remote Sens Environ 130:245–253

    Article  Google Scholar 

  67. Favorskaya M, Tkacheva A, Danilin IM, Medvedev EM (2015) Fusion of airborne LiDAR and digital photography data for tree crowns segmentation and measurement. In: Damiani E, Howlett RJ, Jain LC, Gallo L, De Pietro G (eds) Intelligent interactive multimedia systems and services. Springer, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhmi C. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Favorskaya, M.N., Jain, L.C. (2017). Data Fusion for Evaluation of Woodland Parameters. In: Handbook on Advances in Remote Sensing and Geographic Information Systems. Intelligent Systems Reference Library, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-319-52308-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52308-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52306-4

  • Online ISBN: 978-3-319-52308-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics