Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 122))

Abstract

In natural scene rendering, the light is the most important factor. The global lighting models are based on the reflection and diffusion of light on the surfaces of objects. The lighting environment can be considered as a composition of the outgoing radiance due to the direct lighting from the sky and the reflection of skylight of the ground, the outgoing radiance due to the direct Sun lighting, and the outgoing radiance due to the indirect lighting from the Sun though neighbour leaves. Also, the bidirectional reflectance distribution functions for different types of materials can be designed using physically-based approach. In this chapter, some models, such as Lambertian surfaces, Phong’s reflectance model, Blinn-Phong’s reflectance model, and microfacet models, are discussed. In spite of a shadowing is still an expensive component, the virtual environment without shadows cannot be realistic. Some hard and soft shadow techniques, suitable for the natural scene rendering, are represented in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer A, Neyret F, Poulin P (2001) Interactive rendering of trees with shading and shadows. In: 12th Eurographics conference on rendering EGWR 2001, pp 183–196

    Google Scholar 

  2. Boulanger K (2005) Real-time realistic rendering of nature scenes with dynamic lighting. Ph.D. dissertation, INRIA

    Google Scholar 

  3. Reeves WT, Ricki Blau R (1985) Approximate and probabilistic algorithms for shading and rendering structured particle systems. Comput Graph 19(3):313–322

    Article  Google Scholar 

  4. Hegeman K, Premoze S, Ashikhmin M, Drettakis G (2006) Approximate ambient occlusion for trees. In: Proceedings of 2006 symposium on interactive 3D graphics and games I3D 2006, pp 87–92

    Google Scholar 

  5. Luft T, Balzer M, Deussen O (2007) Expressive illumination of foliage based on implicit surfaces. In: Proceedings of 3th eurographics conference on natural phenomena NPH 2007, pp 71–78

    Google Scholar 

  6. Peterson S, Lee L (2006) Simplified tree lighting using aggregate normals. ACM SIGGRAPH 2006 Sketches SIGGRAPH 2006, article No 47

    Google Scholar 

  7. Soler C, Sillion F, Blaise F, Dereffye P (2003) An efficient instantiation algorithm for simulating radiant energy transfer in plant models. ACM Trans Graph 22(2):204–233

    Article  Google Scholar 

  8. Chelle M, Andrieu B, Bouatouch K (1998) Nested radiosity for plant canopies. Vis Comput 14(3):109–125

    Article  Google Scholar 

  9. Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing. In: 11th Annual conference on computer graphics and interactive techniques ACM SIGGRAPH 1984, pp 137–145

    Google Scholar 

  10. Crow FC (1977) Shadow algorithms for computer graphics. Comput Graph 11(2):242–248

    Article  Google Scholar 

  11. Williams L (1978) Casting curved shadows on curved surfaces. In: 5th Annual conference on computer graphics and interactive techniques ACM SIGGRAPH 1978, pp 270–274

    Google Scholar 

  12. McCool MD (2000) Shadow volume reconstruction from depth maps. ACM Trans Graph (TOG) 19(1):1–26

    Article  Google Scholar 

  13. Eisemann E, Schwarz M, Assarsson U, Wimmer M (2011) Real-time shadows. An A K Peters book. CRC Press, Boca Raton

    Book  Google Scholar 

  14. Maxwell GM, BaileyMJ Goldschmidt VW (1986) Calculations of the radiation configuration factor using ray casting. Comput-Aided Des 18(7):371–379

    Article  Google Scholar 

  15. Parker S, ParkerM Livnat Y, Sloan P-P, Hansen C, Shirley P (1999) Interactive ray tracing for volume visualization. IEEE Trans Vis Comput Graph 5(3):287–296

    Article  Google Scholar 

  16. Dietrich A, Schmittler J, Slusallek P (2006) World-space sample caching for efficient ray tracing of highly complex scenes. Technical Report TR-2006-01, Computer Graphics Group, Saarland University

    Google Scholar 

  17. Ashdown I (1995) Radiosity: a programmer’s perspective. Wiley, New York

    Google Scholar 

  18. Soler C, Sillion F (1998) Automatic calculation of soft shadow textures for fast, high quality radiosity. In: Drettakis G, Max N (eds) Rendering techniques 1998

    Google Scholar 

  19. Stamminger M, Drettakis G (2002) Perspective shadow maps. ACM Trans Graph 21(3):557–562

    Article  Google Scholar 

  20. Lloyd DB, Govindaraju NK, Quammen C, Molnar SE, Manocha D (2008) Logarithmic perspective shadow maps. ACM Trans Graph 27(4):1–39

    Article  Google Scholar 

  21. Kolic I, Mihajlovic Z (2012) Camera space shadow maps for large virtual environments. Virtual Reality 16(4):289–299

    Article  Google Scholar 

  22. Gumbau J, Sbert M, Szirmay-Kalos L, Chover M, Gonzalez C (2013) Smooth shadow boundaries with exponentially warped Gaussian filtering. Comput Graph 37(3):214–224

    Article  Google Scholar 

  23. Lecocq P, Marvie J-E, Sourimant G, Gautron P (2014) Sub-pixel shadow mapping. In: 18th meeting of the ACM SIGGRAPH symposium on interactive 3D graphics and games I3D 2014, pp 103–110

    Google Scholar 

  24. Scherzer D, Wimmer M, Purgathofer W (2011) A survey of real-time hard shadow mapping methods. Comput Graph Forum 30(1):169–186

    Article  Google Scholar 

  25. Catmull EE (1974) A subdivision algorithm for computer display of curved surfaces. Doctoral dissertation, The University of Utah

    Google Scholar 

  26. Heidmann T (1991) Real shadows real time. IRIS Universe 18:28–31. Silicon Graphics Inc

    Google Scholar 

  27. Fernando R, Fernadez S, Bala K, Greenberg DP (2001) Adaptive shadow maps. In: 28th Annual conference on computer graphics and interactive techniques ACM SIGGRAPH 2001, pp 387–390

    Google Scholar 

  28. McCluney WR (2014) Introduction to radiometry and photometry, 2nd edn. Artech House Inc, Norwood, MA, USA

    Google Scholar 

  29. Ramamoorthi R, Hanrahan P (2001) An efficient representation for irradiance environment maps. In: 28th annual conference on computer graphics and interactive techniques SIGGRAPH 2001, pp 497–500

    Google Scholar 

  30. Kontkanen J, Laine S (2005) Ambient occlusion fields. In: Proceedings of the 2005 symposium on interactive 3D graphics and games SI3D 2005, pp 41–48

    Google Scholar 

  31. Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317

    Article  Google Scholar 

  32. Lewis RR (1994) Making shaders more physically plausible. Comput Graph Forum 13(3):1–13

    Article  Google Scholar 

  33. Blinn JF (1977) Models of light reflection for computer synthesized pictures. In: 4th Annual conference on computer graphics and interactive techniques SIGGRAPH 1977, pp 192–198

    Google Scholar 

  34. Torrance KE, Sparrow EM (1967) Theory for off-specular reflection from roughened surfaces. J Opt Soc Am 57:1105–1114

    Article  Google Scholar 

  35. Schlick C (1994) An inexpensive BRDF model for physically-based rendering. Comput Graph Forum 13(3):233–246

    Article  Google Scholar 

  36. Oren M, Nayar SK (1994) Generalization of Lambert’s reflectance model. In: 21st annual conference on computer graphics and interactive techniques ACM SIGGRAPH 1994, pp 239–246

    Google Scholar 

  37. McAllister DK, Lastra A, Heidrich W (2002) Efficient rendering of spatial bi-directional reflectance distribution functions. SIGGRAPH/EUROGRAPHICS Conf Graph Hardware HWWS 2002:79–88

    Google Scholar 

  38. Lafortune EPF, Foo SC, Torrance KE, Donald P, Greenberg DP (1997) Non-linear approximation of reflectance functions. In: 24th Annual conference on computer graphics and interactive techniques SIGGRAPH 1997, pp 117–126

    Google Scholar 

  39. McAllister D (2004) Spatial BRDFs. In: GPU gems. Addison-Wesley, Reading

    Google Scholar 

  40. MÄuller G, Meseth J, Sattler M, Sarlette R, Klein R (2004) Acquisition, synthesis and rendering of bidirectional texture functions. In: Schlick C, Purgathofer W (eds) Eurographics 2004, state of the art reports, INRIA and Eurographics Association

    Google Scholar 

  41. Kajiya JT, Kay TL (1989) Rendering fur with three dimensional textures. Comput Graph 23(3):271–280

    Article  Google Scholar 

  42. Neyret F (1995) A General and multiscale model for volumetric textures. Graph Interface 1995:83–91

    Google Scholar 

  43. Ikits M, Kniss J, Lefohn A, Hansen C (2004) Volume rendering techniques. In: GPU gems. Addison-Wesley, Reading

    Google Scholar 

  44. Engel K, Hadwiger M, Kniss JM, Rezk-salama C, Weiskopf D (2006) Real-time volume graphics. A. K. Peters, Ltd., Natick

    Google Scholar 

  45. Sloan P-P, Kautz J, Snyder J (2002) Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: 29th annual conference on computer graphics and interactive techniques ACM SIGGRAPH 2002, pp 527–536

    Google Scholar 

  46. Annen T, Mertens T, Bekaert P, Seidel H-P, Jan Kautz J (2007) Convolution shadow maps. In: 18th Eurographics conference on rendering techniques EGSR 2007, pp 51–60

    Google Scholar 

  47. Annen T, Mertens T, Seidel H-P, Flerackers E, Kautz J (2008) Exponential shadow maps. Graph Interface GI 2008:155–161

    Google Scholar 

  48. Lauritzen A, McCoolM (2008) Layered variance shadow maps. Graph Interface GI 2008, pp 139–146

    Google Scholar 

  49. Kolivand H, Sunar MS (2014) Covering photo-realistic properties of outdoor components with the effects of sky color in mixed reality. Multimedia Tools Appl 72(3):2143–2162

    Article  Google Scholar 

  50. Max N, Ohsaki K (1995) Rendering trees from precomputed Z-buffer views. In: Hanrahan PM, Purgathofer W (eds) Rendering techniques ’95. Springer-Verlag, Wien

    Google Scholar 

  51. Iqbal M (1983) An introduction to solar radiation. Academic Press, Toronto

    Google Scholar 

  52. Preetham AJ, Shirley P, Smith B (1999) A practical analytic model for daylight. Comput Graph SIGGRAPH 1999:91–100

    Google Scholar 

  53. Isaza C, Salas J, Raducanu B (2013) Rendering ground truth data sets to detect shadows cast by static objects in outdoors. Multimedia Tools Appl 70(1):557–571

    Article  Google Scholar 

  54. Wang R, Wu YQ, Pan MH, Chen W, Hua W (2012) Shadow geometry maps for alias-free shadows. Inf Sci 55(11):1–12

    Article  Google Scholar 

  55. Fournier A, Fussell D (1988) On the power of the frame buffer. ACM Trans Graph 7(2):103–128

    Article  Google Scholar 

  56. Everitt C, Kilgard MJ (2003) Practical and robust stenciled shadow volumes for hardware-accelerated rendering. http://arxiv.org/abs/cs/0301002. Accessed 02 Jun 2016

  57. Kolivand H, Sunar MS, Jusoh NM, Folorunso OA (2011) Real-time shadow using a combination of stencil and the Z-Buffer. Int J Multimedia Appl 3(3):27–38

    Article  Google Scholar 

  58. Xiao Y, Jin Yicheng J, Yong Y, Zhuoyu W (2006) GPU based real time shadow research. Int Conf Comput Graph Imaging Visualisation CGIV 2006:372–377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhmi C. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Favorskaya, M.N., Jain, L.C. (2017). Lighting and Shadows Rendering in Natural Scenes. In: Handbook on Advances in Remote Sensing and Geographic Information Systems. Intelligent Systems Reference Library, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-319-52308-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52308-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52306-4

  • Online ISBN: 978-3-319-52308-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics