Skip to main content

Toward a Gauge Theory of Musical Forces

  • Conference paper
  • First Online:
Quantum Interaction (QI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10106))

Included in the following conference series:

Abstract

How well does a given pitch fit into a tonal scale or key, being either a major or minor key? This question addresses the well-known phenomenon of tonal attraction in music psychology. Metaphorically, tonal attraction is often described in terms of attracting and repelling forces that are exerted upon a probe tone of a scale. In modern physics, forces are related to gauge fields expressing fundamental symmetries of a theory. In this study we address the intriguing relationship between musical symmetries and gauge forces in the framework of quantum cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we chose a natural unit system with particle’s mass \(m = 1/2\) and Planck’s quantum of angular momentum \(\hbar \equiv 1\) as necessary for quantum cognition applications.

  2. 2.

    For the sake of simplicity, we neglect time-dependence of the gauge field in our exposition.

References

  1. de Barros, J.A., Suppes, P.: Quantum mechanics, interference, and the brain. J. Math. Psychol. 53(5), 306–313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blutner, R.: Nonmonotonic inferences and neural networks. Synthese 142(2), 143–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blutner, R.: Modelling tonal attraction: tonal hierarchies, interval cycles, and quantum probabilities. Soft Comput., 1–19 (2015). doi:10.1007/s00500-015-1801-7

  4. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coombes, S., beim Graben, P.: Potthast: tutorial on neural field theory. In: Coombes et al. [6], pp. 1–43

    Google Scholar 

  6. Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds.): Neural Fields: Theory and Applications. Springer, Heidelberg (2014)

    Google Scholar 

  7. beim Graben, P., Potthast, R.: Universal neural field computation. In: Coombes et al. [6], pp. 299–318

    Google Scholar 

  8. von Helmholtz, H.: On the Sensations of Tones. Dover, New York (1877). Translated by Ellis, A.J

    Google Scholar 

  9. Krumhansl, C.L.: The psychological representation of musical pitch in a tonal context. Cogn. Psychol. 11(3), 346–374 (1979)

    Article  Google Scholar 

  10. Krumhansl, C.L.: Music psychology and music theory: problems and prospects. Music Theor. Spectr. 17(1), 53–80 (1995)

    Article  Google Scholar 

  11. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334 (1982)

    Article  Google Scholar 

  12. Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (1980)

    Google Scholar 

  13. Large, E.W.: A dynamical systems approach to musical tonality. In: Huys, R., Jirsa, V.K. (eds.) Nonlinear Dynamics in Human Behavior. Studies in Computational Intelligence, pp. 193–211. Springer, Heidelberg (2011)

    Google Scholar 

  14. Larson, S.: Musical Forces: Motion, Metaphor, and Meaning in Music. Indiana University Press, Bloomington (2012)

    Google Scholar 

  15. Lerdahl, F.: Tonal pitch space. Music Perception 5, 315–350 (1988)

    Article  Google Scholar 

  16. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)

    Google Scholar 

  17. Lins, J., Schöner, G.: A neural approach to cognition based on dynamic field theory. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds.) Neural Fields: Theory and Applications, pp. 319–339. Springer, Heidelberg (2014)

    Google Scholar 

  18. Mazzola, G.: Geometrie der Töne. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  19. Meyer, L.B.: Emotions and Meaning in Music. Chicago University Press, Chicago (1956)

    Google Scholar 

  20. Milne, A.J., Laney, R., Sharp, D.B.: A spectral pitch class model of the probe tone data and scalic tonality. Music Percept. 32(4), 364–393 (2015)

    Article  Google Scholar 

  21. Nunez, P.L.: The brain wave equation: a model for the EEG. Mathematical Biosciences 21(3–4), 279–297 (1974)

    Article  MATH  Google Scholar 

  22. Prince, A., Smolensky, P.: Optimality: from neural networks to universal grammar. Science 275, 1604–1610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schönberg, A.: Harmonielehre. Verlagsanstalt Paul Gerin, Wien (1911), translated by R. E. Carter as: Theory of Harmony. University of California Press, Berkeley (1978)

    Google Scholar 

  24. Schrödinger, E.: Quantisierung als Eigenwertproblem - Erste Mitteilung. Annalen der Physik 79, 361–376 (1926)

    Article  MATH  Google Scholar 

  25. Sengupta, B., Tozzi, A., Cooray, G.K., Douglas, P.K., Friston, K.J.: Towards a neuronal gauge theory. PLoS Biol. 14(3), 1–12 (2016)

    Article  Google Scholar 

  26. Woolhouse, M.: Modelling tonal attraction between adjacent musical elements. J. New Music Res. 38(4), 357–379 (2009)

    Article  Google Scholar 

  27. Wright, J.J.: Attractor dynamics and thermodynamic analogies in the cerebral cortex: synchronous oscillation, the background EEG, and the regulation of attention. Bull. Math. Biol. 73, 436–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wright, J.J., Alexander, D.M., Bourke, P.D.: Contribution of lateral interactions in V1 to organization of response properties. Vis. Res. 46, 2703–2720 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter beim Graben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

beim Graben, P., Blutner, R. (2017). Toward a Gauge Theory of Musical Forces. In: de Barros, J., Coecke, B., Pothos, E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science(), vol 10106. Springer, Cham. https://doi.org/10.1007/978-3-319-52289-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52289-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52288-3

  • Online ISBN: 978-3-319-52289-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics