Skip to main content

On the Interpretation of Probabilities in Generalized Probabilistic Models

  • Conference paper
  • First Online:
Quantum Interaction (QI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10106))

Included in the following conference series:

Abstract

We discuss generalized probabilistic models for which states not necessarily obey Kolmogorov’s axioms of probability. We study the relationship between properties and probabilistic measures in this setting, and explore some possible interpretations of these measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An orthomodular lattice \(\mathcal {L}\), is defined as an orthocomplemented lattice satisfying that, for any a, b and c, if \(a\le c\), then \(a\vee (a^{\bot }\wedge c)=c\). In the Hilbert space case, projection operators are in one to one correspondence to closed subspaces. These form an orthomodular lattice with “\(\vee \)" representing the closure of the sum of two subspaces, “\(\wedge \)" its intersection, and “\((...)^{\bot }\)"representing the orthogonal complement of a given subspace. “\(\le \)" means subspace inclusion. See [23] for a detailed exposition.

  2. 2.

    It is important to notice here that different notions of “rational agent” could be used. In particular, it would be interesting to study the possibility of using Dutch Book Arguments in the generalized setting.

References

  1. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  2. Holik, F., Plastino, A., Saenz, M.: Natural information measures in Cox’ approach for contextual probabilistic theories. Quantum Inf. Comput. 16(1 & 2), 0115–0133 (2016)

    MathSciNet  Google Scholar 

  3. Rocchi, P.: Janus-faced Probability. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  4. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gudder, S.P.: Stochastic Methods in Quantum Mechanics, North Holland, New York (1979)

    Google Scholar 

  6. Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Kluwer Academic Pubulisher, Dordrecht (2004)

    Book  MATH  Google Scholar 

  7. RĂ©dei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  8. Rédei, M., Summers, S.: Studies in history and philosophy of science part B: studies in history and philosophy of modern physics. Probab. Quantum Mech. 38(2), 390–417 (2007)

    Google Scholar 

  9. Davies, E., Lewis, J.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Srinivas, M.: Foundations of a quantum probability theory. J. Math. Phys. 16(8), 1672–1685 (1975)

    Article  MathSciNet  Google Scholar 

  11. Anastopoulos, C.: Annals Of Physics 313, 368–382 (2004)

    Article  MathSciNet  Google Scholar 

  12. Rau, J.: On the relation between quantum mechanical probabilities and event frequencies. Ann. Phys. 324, 2622–2637 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolmogorov, A.N.: Foundations of Probability Theory. Springer, Berlin (1933)

    MATH  Google Scholar 

  14. Cox, R.T.: Probability, frequency, and reasonable expectation. Am. J. Phys. 14, 1–13 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cox, R.T.: The Algebra of Probable Inference. The Johns Hopkins Press, Baltimore (1961)

    MATH  Google Scholar 

  16. Boole, G.: An Investigation of the Laws of Thought. Macmillan, London (1854)

    MATH  Google Scholar 

  17. Knuth, K.H.: Deriving laws from ordering relations. In: Erickson, G.J., Zhai, Y. (eds.) Proceedings of 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, American Institute of Physics, New York, NY, USA, pp. 204-235 (2004)

    Google Scholar 

  18. Knuth, K.H. Measuring on lattices. In: Goggans, P., Chan, C.Y. (eds.) Proceedings of 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, American Institute of Physics, New York, NY, USA, Volume 707, pp. 132-144 (2004)

    Google Scholar 

  19. Knuth, K.H.: Valuations on lattices and their application to information theory. In: Proceedings of the 2006 IEEE World Congress on Computational Intelligence, Vancouver, Canada, July 2006

    Google Scholar 

  20. Knuth, K.H.: Lattice duality: the origin of probability and entropy. Neurocomputing 67C, 245–274 (2005)

    Article  Google Scholar 

  21. Goyal, P., Knuth, K.: Quantum theory and probability theory: their relationship and origin in symmetry. Symmetry 3, 171–206 (2011). doi:10.3390/sym3020171

    Article  MathSciNet  Google Scholar 

  22. Goyal, P., Knuth, K.H., Skilling, J.: Origin of complex quantum amplitudes and Feynman’s rules. Phys. Rev. A 81, 022109 (2010)

    Article  Google Scholar 

  23. Kalmbach, G.: Orthomodular Lattices. Academic Press, San Diego (1983)

    MATH  Google Scholar 

  24. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  25. Reed, M., Simon, B.: Methods of modern mathematical physics I: functional analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  26. Holik, F., Massri, C., Plastino, A., Zuberman, L.: On the lattice structure of probability spaces in quantum mechanics. Int. J. Theor. Phys. 52(6), 1836–1876 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bub, J.: Quantum computation from a quantum logical perspective. Quant. Inf. Process. 7, 281–296 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Holik, F., Bosyk, G.M., Bellomo, G.: Quantum information as a non-kolmogorovian generalization of Shannon’s theory. Entropy 17, 7349–7373 (2015). doi:10.3390/e17117349

    Article  Google Scholar 

  29. Holik, F., Plastino, A., Mechanics, Q.: A new turn in probability theory. In: Zoheir, E. (ed.) Contemporary Research in Quantum Systems. Nova Publishers, New York (2014)

    Google Scholar 

  30. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, Heidelberg (1971)

    Book  MATH  Google Scholar 

  31. Barnum, H., Duncan, R., Wilce, A.: Symmetry, compact closure and dagger compactness for categories of convex operational models. J. Philos. Logic 42, 501–523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stubbe, I., Steirteghem, B.V.: Propositional systems, Hilbert lattices and generalized Hilbert spaces. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook Of Quantum Logic and Quantum Structures: Quantum Structures (2007)

    Google Scholar 

  33. Barnum, H., Barret, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)

    Article  Google Scholar 

  34. Barnum, H., Wilce, A.: Information processing in convex operational theories. Electron. Not. Theor. Comput. Sci. 270(1), 3–15 (2011)

    Article  MATH  Google Scholar 

  35. Gleason, A.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)

    MathSciNet  MATH  Google Scholar 

  36. Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: On Gleason’s theorem without Gleason. Found. Phys. 39, 550–558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Holik, F., Saenz, M., Plastino, A.: A discussion on the origin of quantum probabilities. Ann. Phys. 340(1), 293–310 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Holik, F., Plastino, A., Saenz, M.: Natural information measures for contextual probabilistic models. Quantum Inf. Comput. 16(1 & 2), 0115–0133 (2016)

    MathSciNet  Google Scholar 

  39. Svozil, K.: Quantum Logic. Springer, Verlag (1998)

    MATH  Google Scholar 

  40. Svozil, K., Tkadlec, J.: Greechie diagrams, nonexistence of measures in quantum logics, and Kochen–Specker-type constructions. J. Math. Phys. 37, 5380–5401 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Doring, A.: Kochen-Specker theorem for von neumann algebras. Int. J. Theor. Phys. 44(2) (2005)

    Google Scholar 

  42. Smith, D.: Orthomodular Bell-Kochen-Specker theorem. Int. J. Theor. Phys. 43(10) (2004)

    Google Scholar 

  43. Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  44. Murray, F.J., von Neumann, J.: On rings of operators II. Trans. Am. Math. Soc. 41, 208–248 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  45. von Neumann, J.: On rings of operators III. Ann. Math. 41, 94–161 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  46. Murray, F.J., von Neumann, J.: On rings of operators IV. Ann. Math. 44, 716–808 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  47. Holik, F.: Logic, geometry and probability theory. SOP Trans. Thoer. Phys. 1, 128–137 (2014)

    Article  Google Scholar 

  48. Halvorson, H., Müger, M.: Algebraic Quantum Field Theory. In: Butterfield, J.B., Earman, J.E. (eds.) Philosophy of Physics, Elsevier, Amsterdam, The Netherlands, pp. 731–922 (2006)

    Google Scholar 

  49. Yngvason, J.: The role of type III factors in quantum field theory. Rep. Math. Phys. 55, 135–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics: Volumes 1 and 2. Springer, Heidelberg (2012)

    Google Scholar 

  51. Feynman, R.P.: The concept of probability in quantum mechanics. In: Proceedings of Second Berkeley Symposium on Mathethical Statistical and Probability, University of California Press, pp. 533–541 (1951)

    Google Scholar 

  52. da Costa, N., Lombardi, O., Lastir, M.: A modal ontology of properties for quantum mechanics. Synthese 190(17), 3671–3693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Domenech, G., Holik, F., Massri, C.: A quantum logical and geometrical approach to the study of improper mixtures. J. Math. Phyys. 51(5), 052108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The Authors acknowledge CONICET and UNLP (Argentina). We are grateful to the anonymous reviewers, whose comments have helped to improve the manuscript. This publication was also made possible through the support of grant 57919 from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. FH also is grateful to the participants of the Conference “Quantum interactions - 2016” (San Franciso, July 2016), for the stimulating and lively discussions that have enriched this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Holik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Holik, F., Fortin, S., Bosyk, G., Plastino, A. (2017). On the Interpretation of Probabilities in Generalized Probabilistic Models. In: de Barros, J., Coecke, B., Pothos, E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science(), vol 10106. Springer, Cham. https://doi.org/10.1007/978-3-319-52289-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52289-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52288-3

  • Online ISBN: 978-3-319-52289-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics