Skip to main content

Abstract

The word “rubber” immediately brings to mind materials that are highly flexible and will snap back to their original shape after being stretched. In this chapter, a variety of materials are discussed that possess these odd characteristics. There will also be a discussion on the mechanism of this “elastic retractive force.” Originally, rubber meant the gum collected from a tree growing in Brazil. The term “rubber” was coined for this material by the English chemist Joseph Priestley, who noted that it was effective for removing pencil marks from paper. Today, in addition to Priestley’s natural product, many synthetic materials are made that possess these characteristics and many other properties. The common features of these materials are that they are made up of long-chain molecules that are amorphous (not crystalline), and the chains are above their glass transition temperature at room temperature.

D.F. Graves retired from Firestone Polymers LLC, Akron, OH, USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitley GS, Davis CC, Dunbrook RF (eds) (1954) Synthetic rubber. Wiley, New York

    Google Scholar 

  2. Blackely DC (1983) Synthetic rubber: their chemistry and technology, Chapter 2. Applied Science, London

    Book  Google Scholar 

  3. Source: International Rubber Study Group, 2015

    Google Scholar 

  4. Bloomberg (2015) World rubber demand slowdown to weigh on prices through 2020. Bloomberg, New York

    Google Scholar 

  5. WCED (1987) World Commission on Environment and Development “Our common future”. Oxford University Press, Oxford, NY

    Google Scholar 

  6. Rothon R (2014) The future of disruptive technologies in the tires industry to 2035. Smithers Rapra, Portland ME

    Google Scholar 

  7. Fox TG, Grateh S, Loshaek S (1956) Rheology—theory and applications, vol 1. Academic, New York

    Google Scholar 

  8. Painter PC, Coleman MM (1998) Fundamentals of polymer science, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  9. Odian G (1970) Principles of polymerization. McGraw-Hill, New York

    Google Scholar 

  10. Flory PJ (1953) Principles of polymer chemistry, Chapter 7. Cornell University Press, Ithaca, NY

    Google Scholar 

  11. Rodriguez F (1982) Principles of polymer systems. McGraw-Hill, New York

    Google Scholar 

  12. Rudin A (1982) The elements of polymer science and engineering. Academic, New York

    Google Scholar 

  13. Krause S (1972) J Macromol Sci C7(2):251

    Article  Google Scholar 

  14. Aklonis JJ (1972) Introduction to polymer viscoelasticity. Wiley, New York

    Google Scholar 

  15. Oberster AE, Bouton TC, Valaitis JK (1973) Angew Makromolek Chem 29/30:291

    Article  Google Scholar 

  16. Flory PJ (1949) J Chem Phys 17:223

    Article  CAS  Google Scholar 

  17. Natta G (1969) in Polymer chemistry of synthetic elastomers, part 1. In: Kennedy J, Tornqvist E (eds) Chapter 7. Wiley, New York

    Google Scholar 

  18. Semegen ST, Cheong SF (1978) Vanderbilt rubber handbook. RT Vanderbilt Company, Norwalk, pp 18–41

    Google Scholar 

  19. Webster CC, Baulkwill WJ (1989) Rubber, Chapters 1 and 11. Wiley, New York

    Google Scholar 

  20. Brandrup J, Immergut E (1975) Polymer handbook, vol III. Wiley, New York, p 54

    Google Scholar 

  21. Treloar L (1949) The physics of rubber elasticity. Clarendon, Oxford

    Google Scholar 

  22. Poh WN (1989) Elastomers, p 12

    Google Scholar 

  23. Warren-Thomas E, Dolman PM, Edwards DP (2015) Conserv Lett 8(4):230–241

    Article  Google Scholar 

  24. International Institute of Synthetic Rubber Producers (1973) Synthetic rubber: the story of an industry. IISRP, New York

    Google Scholar 

  25. Stavelv FW (1956) Ind Eng Chem 48:778, presented at Div. Rubber Chem., ACS, Philadelphia, 1955

    Google Scholar 

  26. Eng. Patent 827365, to Goodrich–Gulf Chem., Dec 1954, priority data

    Google Scholar 

  27. Worldwide Rubber Statistics 2004 (2004) International Institute of Synthetic Rubber Producers, Houston, p 11

    Google Scholar 

  28. Worldwide Rubber Statistics 2009 (2009) International Institute of Synthetic Rubber Producers, Houston, p 5

    Google Scholar 

  29. Renninger TJ (1990) Presentation to international rubber study group, Ottawa, Sept 1990

    Google Scholar 

  30. Faith WL et al (1957) Industrial chemicals. Wiley, New York, p 731

    Google Scholar 

  31. Dunbrook RF (1947) India Rubber World 117:203–207

    CAS  Google Scholar 

  32. Gardon JL (1970) Rubber Chem Technol 43:74–94

    Article  Google Scholar 

  33. Storey EB (1961) Rubber Chem Technol 34:1402

    Article  CAS  Google Scholar 

  34. Kuntz L (1969) J Polym Sci 54:569

    Article  Google Scholar 

  35. Bouton T, Futamura S (1974) Rubber Age 3:33

    Google Scholar 

  36. Mostert S, Van Amergongen G (1968) British Patent 1,136,189

    Google Scholar 

  37. Day G, Moore D (1985) Paper at 26th annual meeting, IISRP, May 1985

    Google Scholar 

  38. Quirk RP (1996) Rubber Chem Technol 69(3):444

    Article  CAS  Google Scholar 

  39. Oshima N, Salcacobore M, Tsutsumi F (1986) Paper at 27th annual meeting, IISRP, May 1986

    Google Scholar 

  40. Loh B (2015) Butadiene—a review. Argus Media, Seoul, South Korea

    Google Scholar 

  41. Ponder T (1976) Hydrocarb Process 55(10):119–121

    Google Scholar 

  42. Womeldroph D (1958) Am Petrol Inst (14 May 1958)

    Google Scholar 

  43. Welch M (1978) Hydrocarb Process 57(11):131–136

    CAS  Google Scholar 

  44. Adams H, Farhat K, Johnson B (1966) Ind Eng Chem Prod Dev 5(2):127

    Article  Google Scholar 

  45. Halasa A, Schulz D, Tate D, Mochel V (1980) In: Stone F, West R (eds) Advances in organometallic chemistry, vol 18. Academic, New York

    Google Scholar 

  46. Tate D, Bethea T (1985) Encyclopedia of polymer science and engineering, vol 2. Wiley, New York, pp 568–572

    Google Scholar 

  47. Lauretti F, Gargani L (1987) 27th annual meeting, IISRP, June 1987

    Google Scholar 

  48. DeChirico A, Lamzani P, Eaggi E, Bruzzone M (1974) Makromol Chem 175:2029

    Article  CAS  Google Scholar 

  49. Buckenell C (1977) Toughened plastics. Applied Science, London

    Book  Google Scholar 

  50. Maruko T (2000) Solid golf ball. US Patent No. 6,071,201

    Google Scholar 

  51. Worldwide Rubber Statistics (2014) IISRP, Houston, TX

    Google Scholar 

  52. Natta G (1961) J Polym Sci A 51:411

    CAS  Google Scholar 

  53. Lukach C, Spurlin H (1964) In: Ham G (ed) Copolymerization. Interscience, New York

    Google Scholar 

  54. Crespi G, DiDrusco G (1969) Hydrocarb Process 48:103–107

    CAS  Google Scholar 

  55. Vandenberg E, Repka B, in Ref. 12, Chapter 11

    Google Scholar 

  56. Scagliotti F, Milani F, Galli P (1985) Paper at 26th annual meeting, IISRP, May 1985

    Google Scholar 

  57. Miles D, Briston J (1963) Polymer Technology. Chemical Publishing, New York, p 299

    Google Scholar 

  58. Powers KW (1993) Para-alkylstyrene/isoolefin copolymers. US Patent No 5,162,445

    Google Scholar 

  59. Butyl rubber reaches 50 year mark. (1998) Elastomerics: 30–31

    Google Scholar 

  60. Konrad E, Tschunkur E (1934) G. Farbenindustrie. U.S. Patent 1,973,000 to 1

    Google Scholar 

  61. Rubber Journal Asia (2011) May 13 (online journal)

    Google Scholar 

  62. McKenzie G (1986) Paper at 27th annual meeting, IISRP, May 1986

    Google Scholar 

  63. Hashimoto K et al. (1985) Paper at 26th annual meeting, IISRP, May 1985

    Google Scholar 

  64. Buding H (1986) Production of hydrogenated nitrile rubber. US Patent No. 4,581,417

    Google Scholar 

  65. Whitley GS, Davis CC, Dunbrook RF (eds) (1954) Synthetic rubber. Wiley, New York, p 770

    Google Scholar 

  66. Miles D, Briston J (1963) Polymer technology. Chemical Publishing, New York, p 305

    Google Scholar 

  67. Blackely DC (1983) Synthetic rubber: their chemistry and technology, Chapter 2. Applied Science, London, pp 175–194

    Book  Google Scholar 

  68. Brodrecht L (1989) Chemical economics handbook. SRI International, Menlo Park

    Google Scholar 

  69. Polmateer K (1988) Rubber Chem Technol 16(3):470

    Article  Google Scholar 

  70. Semegen ST, Cheong SF (1978) Vanderbilt rubber handbook. RT Vanderbilt Company, Norwalk, pp 216–232

    Google Scholar 

  71. Natta G (1969) in Polymer chemistry of synthetic elastomers, part 1. In: Kennedy J, Tornqvist E (eds) Chapter 8. Wiley, New York

    Google Scholar 

  72. Morton M, Fetters L (1977) Polymerization processes, Chapter 9. Wiley, New York

    Google Scholar 

  73. Bhowmick AK, Stephens H (eds) (1988) Handbook of elastomers. Marcel Dekker, New York, pp 643–659 (Chaper 16)

    Google Scholar 

  74. Kraton polymers for adhesives & sealants, Shell online literature, Shell Chemical Web site

    Google Scholar 

  75. Bull A, Vonk W (1988) Shell chemicals technical manual TPE 8: 15 report. (Shell Web site)

    Google Scholar 

  76. Broadrecht L, Mulach R, Tauchiya K (1989) Chemical economics handbook—elastomers. SRI International, Menlo Park

    Google Scholar 

  77. Abdou-Sabet S (1996) Rubber Chem Technol 69(3):476

    Article  CAS  Google Scholar 

  78. Penn W (1971) PVC technology. Applied Science, London

    Google Scholar 

  79. Miles DC, Briston JH (1963) Polymer technology. Chemical Publishing, New York, p 159

    Google Scholar 

  80. Worldwide Rubber Statistics 2009 (2009) International Institute of Synthetic Rubber Producers, Houston

    Google Scholar 

  81. Morton M (1995) Rubber technology. Chapman & Hall, London, p 410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rackaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rackaitis, M., Graves, D.F. (2017). Rubber. In: Kent, J., Bommaraju, T., Barnicki, S. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-52287-6_26

Download citation

Publish with us

Policies and ethics