Skip to main content

The Chemistry of Structural Adhesives: Epoxy, Urethane, and Acrylic Adhesives

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

Adhesives have been used successfully in a variety of applications for centuries. Today, adhesives are more important than ever in our daily lives, and their usefulness is increasing rapidly. In the past few decades, there have been significant advances in materials and in bonding technology. People now routinely trust their fortunes and their lives to adhesively bonded structures and rarely think about it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lewis acids and Lewis bases are discussed in “Chain-Growth Polymerizations.”

  2. 2.

    See the discussion in [6], pp. 217.

References

  1. The Adhesion Society. Blacksburg, VA. http://www.adhesionsociety.org

  2. Wake WC (1982) Adhesion and the formulation of adhesives, 2nd edn. Applied Science, New York

    Google Scholar 

  3. Lee L-H (1984) Adhesive chemistry, developments and trends. Plenum, New York

    Google Scholar 

  4. Panek JR, Cook JP (1984) Construction sealants and adhesives, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  5. Adams RD, Wake WC (1984) Structural adhesive joints in engineering. Elsevier, New York

    Book  Google Scholar 

  6. Hartshorn SR (ed) (1986) Structural adhesives chemistry and technology. Plenum, New York

    Google Scholar 

  7. Kinloch AJ (1987) Adhesion and adhesives science and technology. Chapman and Hall, London

    Book  Google Scholar 

  8. Tong L, Steven GP (1999) Analysis and design of structural bonded joints. Kluwer Academic, Boston

    Book  Google Scholar 

  9. Ward N, Young T (2001) The complete guide to glues and adhesives. Krause, Iola

    Google Scholar 

  10. Gierenz G (ed) (2001) Adhesives and adhesive tapes. Wiley, New York

    Google Scholar 

  11. Moore DR (ed) (2001) Fracture mechanics testing methods for polymers, adhesives and composites. Elsevier, Amsterdam

    Google Scholar 

  12. Veselovskii RA, Kestelman VN, Veselovsky RA (2001) Adhesion of polymers. McGraw-Hill, New York

    Google Scholar 

  13. Pocius AV (2002) Adhesion and adhesives technology. Hanser Gardner, Munchen

    Google Scholar 

  14. Pocius AV, Dillard D, Chaudhury M (2002) Surfaces, chemistry and applications: adhesion science and engineering. Elsevier, Amsterdam

    Google Scholar 

  15. Pizzi A (ed) (2003) Handbook of adhesive technology. Marcel Dekker, New York

    Google Scholar 

  16. Swanson DW (2005) Adhesive materials for electronic applications: polymers, bonding, and reliability. William Andrew, Norwich

    Google Scholar 

  17. Fisher LW (2005) Selection of engineering materials and adhesives. CRC, Boca Raton

    Book  Google Scholar 

  18. Packham DE (2005) Handbook of adhesion. Wiley, Hoboken

    Book  Google Scholar 

  19. Dillard D (2010) Advances in structural adhesive bonding. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  20. Adams RD (2005) Adhesive bonding, science, technology, and applications. CRC, Boca Raton

    Book  Google Scholar 

  21. Petrie EM (2006) Epoxy adhesive formulations. McGraw-Hill, New York

    Google Scholar 

  22. Pizzi A, Mittal KL (2003) Handbook of adhesive technology. Marcel Dekker, New York

    Google Scholar 

  23. Yacobi BG, Hubert M (2003) Adhesive bonding in photonics assembly and packaging. American Scientific, Stevenson Ranch

    Google Scholar 

  24. Abbott S (2015) Adhesion science: principles and practice. DEStech Publications, Inc., Lancaster, PA

    Google Scholar 

  25. Possart W (ed) (2005) Adhesion: current research and applications. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  26. Mittal KL (2015) Progress in adhesion and adhesives. Wiley, Hoboken

    Book  Google Scholar 

  27. Mittal KL, Ahsan T (eds) (2014) Adhesion in microelectronics. Hoboken, Beverly

    Google Scholar 

  28. Gutowski, W & Doduik, H (ed) (2013) Recent advances in Adhesion Science and Technology in Honor of Dr.Kash Mittal, CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  29. Ebnesajjad S, Ebnesajjad C (2007) Surface treatment of materials for adhesion bonding. William Andrew Publishing, Norwich, NY

    Google Scholar 

  30. Da Silva LFM, Ӧchner A, Adams RD (eds) (2011) Handbook of Adhesion Technology. Springer, Berlin

    Google Scholar 

  31. Wolf RA (2009) Plastic surface modification: surface treatment and adhesion. Hanser, Munchen

    Google Scholar 

  32. Fowkes FM, Mostafa MA (1978) Acid-base interactions in polymer adhesion. Ind Eng Chem Prod Res Dev 17(1):3–7

    Article  CAS  Google Scholar 

  33. Fowkes FM (1983) Acid-base interactions: relevance to adhesion science and technology. In: Mittal KL (ed) Physicochemical aspects of polymer surfaces, vol 2. Plenum, New York, p 583

    Google Scholar 

  34. Mark HF (1979) Future improvements in the cohesive and adhesive strength of polymers—part I. Adhes Age 22(7):35–40

    CAS  Google Scholar 

  35. Mark HF (1979) Future improvements in the cohesive and adhesive strength of polymers—part II. Adhes Age 22(9):45–50

    CAS  Google Scholar 

  36. May CA (ed) (1988) Epoxy resins: chemistry and technology, 2nd edn. New York, Marcel Dekker

    Google Scholar 

  37. Castan P (1943) Process of preparing synthetic resins. US Patent 2,324,483

    Google Scholar 

  38. Dow Chemical (1999) Dow Liquid Epoxy Resins, Form No. 296–00224-0199 WC_M. http://epoxy.dow.com/index.htm

  39. Hexion Specialty Chemical (a Momentive company). http://www.hexion.com/Products/TechnicalDataSheets.aspx?id=2273

  40. Reichhold, Inc. http://www.reichhold.com/en/coatings-products.aspx?cat=Brands&pid=24

  41. Polystar, LLC. http://www.polystarusa.com/products.php?c=Epoxy+Resins&cid=10

  42. Huntsman Corp., EPON Product Overview 2009–08. http://www.huntsman.com/advanced_materials/eng/Home/Coatings/Publications/Coatings/index.cfm?PageID=5898

  43. Hexion Specialty Chemical (a Momentive company), Eponol™ Resin 53-BH-35

    Google Scholar 

  44. Partansky AM (1968) A study of accelerators for epoxy-amine condensation reaction. Am Chem Soc Div Org Coat Plast Chem 28(1):366

    CAS  Google Scholar 

  45. Partansky AM (1970) A study of accelerators for epoxy-amine condensation reaction. In: Lee H (ed) Epoxy resins, vol 92. ACS, Washington, pp 29–47. doi:10.1021/ba-1970-0092.ch004

    Chapter  Google Scholar 

  46. Hine J, Linden S-M, Kanagasabapathy VM (1985) Double-hydrogen-bonding catalysis of the reaction of phenyl glycidyl ether with diethylamine by 1,8-biphenylenediol. J Org Chem 50(25):5096–5099. doi:10.1021/jo00225a021

    Article  CAS  Google Scholar 

  47. Matejka L, Pokomy S, Dusek K (1982) Network formation involving epoxide and carboxyl groups. Polym Bull (Berlin) 7(2–3):123–128

    CAS  Google Scholar 

  48. Dusek K, Matejka L (1984) Transesterification and gelation of polyhydroxy esters formed from diepoxides and dicarboxylic acids. In: Riew CK, Gillham JK (eds) Rubber modified thermoset resins, vol 208. ACS, Washington, pp 15–26. doi:10.1021/ba-1984-0208.ch002

    Chapter  Google Scholar 

  49. Abbey KJ, Pressley MW, Durso SR (1999) Controlled cure of thiol-epoxy systems. In: Speth DR (ed) Proceedings of the 22nd annual meeting of The Adhesion Society, Panama City Beach, FL, 21–24 Feb 1999

    Google Scholar 

  50. Crivello JV (1979) Heat curable compositions. US Patent 4,173,551

    Google Scholar 

  51. Crivello JV (1980) Heat curable cationically polymerizable compositions and method of curing same with onium salts and reducing agents. US Patent 4,216,288

    Google Scholar 

  52. Crivello JV (1982) UV curable compositions and substrates treated therewith. US Patent 4,319,974

    Google Scholar 

  53. Crivello JV, Ashby BA (1982) Methods of adhesive bonding using visible light cured epoxies. US Patent 4,356,050

    Google Scholar 

  54. Crivello JV, Lee JL (1984) Photocurable compositions. US Patent 4,442,197

    Google Scholar 

  55. Yagci Y, Reetz I (1998) Externally stimulated initiator systems for cationic polymerization. Prog Polym Sci 23(8):1485–1538

    Article  CAS  Google Scholar 

  56. Tarbutton KS, Robins J (1989) Acid catalyzed, toughened epoxy adhesives. US Patent 4,846,905

    Google Scholar 

  57. Khan NH, Razi Abdi SH, Kureshy RI, Singh S, Ahmad I, Jasra RV, Ghosh PK (2007) Catalytic process for the preparation of epoxides from alkenes. US Patent 7,235,676

    Google Scholar 

  58. Mikawa M, Uchida S-I (2003) Catalyst for production of epoxides and methods for production thereof and epoxides. US Patent 6,600,056

    Google Scholar 

  59. Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) Toughening structural adhesives via nano- and micro-phase inclusions. J Adhes 79:867–873. doi:10.1080/00218460390242234

    Article  CAS  Google Scholar 

  60. Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40:5083–5086. doi:10.1007/s10853-005-1716-2

    Article  CAS  Google Scholar 

  61. Liang YL, Oldak RK, Pearson RA (2007) Particle size effect in rubber-glass sphere toughened epoxies. In: Jagota A (ed) Proceedings 30th annual meeting of The Adhesion Society. The Adhesion Society, Blacksburg, VA, pp 343–345

    Google Scholar 

  62. Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46(23):10506–10516. doi:10.1016/j.polymer.2005.08.028

    Article  CAS  Google Scholar 

  63. Oldak RK, Hydro RM, Pearson RA (2007) On the use of triblock copolymers as toughening agents for epoxies. In: Jagota A (ed) Proceedings 30th annual meeting of The Adhesion Society. The Adhesion Society, Blacksburg, VA, pp 153–156

    Google Scholar 

  64. Boogh L, Pettersson B, Månson J-AE (1999) Dendritic hyperbranched polymers as tougheners for epoxy resins. Polymer 40:2249–2261. doi:10.1016/S0032-3861(98)00464-9

    Article  CAS  Google Scholar 

  65. Mezzenga R, Boogh L, Petterson B (2000) Chemically induced phase separated morphologies in epoxy resin-hyperbranched polymer blends. Macromol Symp 149:17–22. doi:10.1002/1521-3900(200001)149:1<17::AID-MASY17>3.0.CO;2-O

    Article  CAS  Google Scholar 

  66. Mezzenga R, Månson JAE (2001) Thermo-mechanical properties of hyperbranched polymer modified epoxies. J Mater Sci 36:4883–4891. doi:10.1023/A:1011880019156

    Article  CAS  Google Scholar 

  67. Mezzenga R, Plummer CJG, Boogh L, Månson JAE (2001) Morphology build-up in dendritic hyperbranched polymer modified epoxy resins: modeling and characterization. Polymer 42:305–317. doi:10.1016/S0032-3861(00)00307-4

    Article  CAS  Google Scholar 

  68. Bayer O (1937) Verfahren zur Herstellung von Polyurethanen bzw. Polyharnstoffen. German Patent 728.981

    Google Scholar 

  69. Saunders JH, Frisch KC (1962, 1964) Polyurethanes, chemistry and technology, vols 1 and 2. Interscience, New York

    Google Scholar 

  70. Oertel G (ed) (1994) Polyurethane handbook, 2nd edn. Munich, Hanser

    Google Scholar 

  71. Randall D, Lee S (eds) (2003) The polyurethane book. Wiley, New York

    Google Scholar 

  72. Dunn DJ (2004) Engineering and structural adhesives (Rapra Review Reports, 15(1), Report 169). Rapra Technology Ltd., Shropshire

    Google Scholar 

  73. Ltd RT (2004) Polyurethane adhesives (Rapra Published Search Number 114). Rapra Technology Ltd, Shropshire

    Google Scholar 

  74. Fabris HJ, Maxey EM, Uelzmann H (1973) Urethane adhesive having improved sag resistance. US Patent 3,714,127

    Google Scholar 

  75. Goel AB (1988) Sag resistant urethane adhesives with improved antifoaming property. US Patent 4,728,710

    Google Scholar 

  76. Baueriedel H (1986) Adhesives based on polyurethane prepolymers having a low residual monomer content. US Patent 4,623,709

    Google Scholar 

  77. Bolte G, Henke G, Kruedenscheidt M, Omoruyi A (2003) Low monomer polyurethane prepolymer and process therefore. US Patent 6,515,164

    Google Scholar 

  78. Ono H-K, Jones FN, Pappas SP (1985) Relative reactivity of isocyanate groups of isophorone diisocyanate. Unexpected high reactivity of the secondary isocyanate group. J Polym Sci Polym Lett Ed 23:509–515. doi:10.1002/pol.1985.130231003

    Article  CAS  Google Scholar 

  79. Okawa T (1992) Process for producing isocyanate compound. US Patent 5,166,414

    Google Scholar 

  80. Mason RW (2004) Non-phosgene route to the manufacture of organic isocyanates. US Patent 6,781,010

    Google Scholar 

  81. Nagata T, Yamashita H, Kusumoto M, Okazaki K (1994) Stabilizing method of isocyanate compounds and isocyanate compositions stabilized thereby. US Patent 5,302,749

    Google Scholar 

  82. Rosen R, Bernard J-M, Duffy CS (2007) Color stability of isocyanates. US Patent 7,297,746

    Google Scholar 

  83. Ohashi Y, Matsuda H, Nishi E, Nishida T (1997) Moisture curing urethane adhesive composition. US Patent 5,698,656

    Google Scholar 

  84. Fukatsu S, Hattori Y (1998) Moisture curable polymer composition and process for production thereof. US Patent 5,767,197

    Google Scholar 

  85. Suen W (2010) Two component polyurethane adhesive. US Patent 7,834,123

    Google Scholar 

  86. Schoener TE, Housenick JB (2002) Polyurethane reaction system having a blocked catalyst combination. US Patent 6,348,121

    Google Scholar 

  87. Ambrose R, Retsch WR Jr, Chasser A (2001) Blocked isocyanate-based compounds and compositions containing the same. US Patent 6,288,199

    Google Scholar 

  88. Bader E (1967) Polychloroprene adhesives. US Patent 3,333,025

    Google Scholar 

  89. Bauer W Jr (2004) Acrylic acid and derivatives. In: Seidel A (ed) Kirk-Othmer Encyclopedia of Chemical Technology, 5(1):342–369. Wiley, New York. doi:10.1002/0471238961.0103182502012105.a01.pub2

  90. Wilczynski R, Juliette JJ (2006) Methacrylic acid and derivatives. In: Seidel A (ed) Kirk-Othmer Encyclopedia of Chemical Technology, 16(5):227–270. Wiley, New York. doi:10.1002/0471238961.1305200807181519.a01.pub2

  91. Huang J-P, Righettini RF, Dennis FG (2001) Adhesive formulations. US Patent 6,225,408

    Google Scholar 

  92. Briggs PC, Muschiatti LC (1975) Novel adhesive compositions. US Patent 3,890,407

    Google Scholar 

  93. Zalucha DJ, Sexsmith FH, Hornaman EC, Dawdy TH (1981) Structural adhesive formulations. US Patent 4,223,115

    Google Scholar 

  94. Dawdy TH (1984) Epoxy modified structural adhesives having improved heat resistance. US Patent 4,467,071

    Google Scholar 

  95. McCormick FB, Drath DJ, Gorodisher I, Kropp MA, Palazzotto MC, Sahyun MRV (2000) Energy-curable cyanate/ethylenically unsaturated compositions. US Patent 6,069,219

    Google Scholar 

  96. Righettini RR, Dawdy TH (1999) Free radical polymerizable compositions including para-halogenated aniline derivatives. US Patent 5,932,638

    Google Scholar 

  97. Edelman R, Catena W (1999) Rapid curing structural acrylic adhesive. US Patent 5,865,936

    Google Scholar 

  98. Usifer DA, Broderick IC (1995) Urethane adhesive compositions. US Patent 5,426,166

    Google Scholar 

  99. Usifer DA, Broderick IC (1996) Urethane adhesive compositions. US Patent 5,484,864

    Google Scholar 

  100. Hu S (2006) Radiation-curable compositions for optical fiber coating materials. US Patent 7,105,583

    Google Scholar 

  101. Maxlok™ acrylic adhesives. http://lordmaxlok.com

  102. Imai Y, Fujisawa S, Matsui H, Yamazaki H, Masuhuara E (1973) Japanese Kokai 48–100477

    Google Scholar 

  103. Fujisawa S, Imai Y, Masuhara E (1969) Studies on dental self-curing resins: 2. Characterization of the various complexes of Tri-n-butyl borane as an initiator, Iyo Kizai Kenkyujo hokoku. Reports of the Institute for Medical and Dental Engineering. Tokyo Medical and Dental University 3:64–71

    CAS  Google Scholar 

  104. Zharov JV, Krasnov JN (1996) Polymerizable compositions made with polymerization initiator systems based on organoborane amine complexes. US Patent 5,539,070

    Google Scholar 

  105. 3M Technical Literature for DP-8010, Jan 2002

    Google Scholar 

  106. Sonnenschein MF, Webb SP, Rondan NG (2004) Amine organoborane complex polymerization initiators and polymerizable compositions. US Patent 6,706,831; and 15 more recent patents by the lead inventor

    Google Scholar 

  107. Leaversuch RD (2002) Long-glass PP makes inroads in automotive front ends. Plastics Technology. Gardner. http://www.plasticstechnology.com/articles/200207cu1.html

  108. Kneafsey, B. J.; Scott, E. P.; Hersee, R. M. (2012) Adhesive bonding systems having adherence to low energy surfaces. US Patent 8,202,932

    Google Scholar 

  109. Kneafsey, B. J.; Scott, E. P. (2012) Adhesive bonding system having adherence to low energy surfaces. US Patent 8,158,735

    Google Scholar 

  110. Kendall JL, Abbey KJ. (2004) Internally coordinated organoboranes. US Patent Application 20040242817

    Google Scholar 

  111. Abbey KJ, Kendall JL (2004) Internally coordinated organoboranes: stability and activation in polyolefin adhesives. Polym Mater Sci Eng 91(2):175–176

    CAS  Google Scholar 

  112. Pohl E, Osterholz FD (1987) Novel vulcanizable silane-terminated polyurethane polymers. US Patent 4,645,816

    Google Scholar 

  113. Brownstein AM (1969) Anaerobic adhesive. US Patent 3,428,614

    Google Scholar 

  114. Su W-FA (1986) UV curable high tensile strength resin composition. US Patent 4,618,632

    Google Scholar 

  115. Sonnenschein MF, Webb SP, Wendt BL (2008) Poly(acrylate/siloxane) hybrid adhesives for polymers with low surface energy. Int J Adhes Adhes 28(3):126–134. doi:10.1016/j.ijadhadh.2007.07.001

    Article  CAS  Google Scholar 

  116. Hawkins JM (1972) Epoxy resin adhesive compositions containing an isocyanate terminated polyurethane prepolymer and a chain extender. US Patent 3,636,133

    Google Scholar 

  117. Trieves R, Pratley KGM (1986) Two-component adhesive or sealing composition. US Patent 4,623,702

    Google Scholar 

  118. Anderson GJ, Zimmel JM (1999) Thermally stable hot melt moisture-cure polyurethane adhesive composition. US Patent 5,939,499

    Google Scholar 

  119. McInnis EL, Santosusso TM, Quay JR (2001) Hot melt adhesives comprising low free monomer, low oligomer isocyanate prepolymers. US Patent 6,280,561

    Google Scholar 

  120. Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522. doi:10.1016/j.progpolymsci.2008.02.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk J. Abbey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abbey, K.J., Zalucha, D.J. (2017). The Chemistry of Structural Adhesives: Epoxy, Urethane, and Acrylic Adhesives. In: Kent, J., Bommaraju, T., Barnicki, S. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-52287-6_10

Download citation

Publish with us

Policies and ethics