Skip to main content

De Sitter Relativity: A Sixty-Year-Long Story

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

In this chapter we sketch out a historical overview of de Sitter Relativity, focusing on the projective version developed by the Italian mathematicians L. Fantappiè and G. Arcidiacono in the early 1950s. In addition, we analyze tendencies and problems connected to de Sitter Relativity in contemporary physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    National Institute of Higher Mathematics.

References

  1. Dyson, F.J.: Missed opportunities. Bull. Am. Math. Soc. 78, 635–652 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fantappié, L.: Rend. Accad. Lincei XVII, fasc. 5 (1954)

    Google Scholar 

  3. Fantappié, L.: Sui fondamenti gruppali della fisica (posthumous). Collectanea Math. XI, fasc. 2 (1959)

    Google Scholar 

  4. Ciccoli, N.: Fantappiè’s “final relativity” and deformations of Lie algebras. Arch. Hist. Exact Sci. 69(3), 311–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castelnuovo G.: Rend. Accad. Lincei XII, 263 (1930)

    Google Scholar 

  6. Moschella U.: The de Sitter and anti-de Sitter sightseeing tour. In: Damour, T., Darrigol, O., Duplantier, B., Rivesseau, V. (eds.) Einstein 1905–2005, Progress in Mathematical Physics 47. Birkhauser, Basel (2006)

    Google Scholar 

  7. Bacry, H., Lévy-Leblond, J.: Possible kinematics. J. Math. Phys. 9(10), 1605 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fock, V.A.: The Theory of Space, Time and Gravitation. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  9. Kerner, H.E.: Proc. Natl. Acad. Sci. U. S. A. 73, 1418–1421 (1976)

    Article  ADS  Google Scholar 

  10. Guo, H.-Y.: On principle of inertia in closed Universe. Phys. Lett. B653, 88–94 (2007)

    Google Scholar 

  11. Guo, H.-Y.: Special relativity and theory of gravity via maximum symmetry and localization. Sci. China A 51(4), 568–603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, H.-Y., Huang, C.-G., Xu, Z., Zhou, B.: On beltrami model of de Sitter Spacetime. Mod. Phys. Lett. A 19, 1701–1710 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Guo, H.-Y., Zhou, B., Tian, Y., Xu, Z.: The triality of conformal extensions of three kinds of special relativity. Phys. Rev. D 75, 026006 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Aldrovandi, R., Beltrán Almeida, J.P., Pereira J.G.: Some implications of the cosmological constant to fundamental physics. In: Cosmology and Gravitation, XIIth Brazilian School of Cosmology and Gravitation. AIP Conference Proceedings 910, pp. 381–395 (2007)

    Google Scholar 

  15. Aldrovandi, R., Beltrán Almeida, J.P., Mayor, C.S.O., Pereira, J.G.: Lorentz transformations in de Sitter relativity. gr-qc/0709.3947

    Google Scholar 

  16. Aldrovandi, R., Beltrán Almeida, J.P., Pereira J.G.: De Sitter special relativity. Class. Quantum Grav. 24(6), 1385–1404 (2007)

    Google Scholar 

  17. Janzen D.: A solution to the cosmological problem of relativity theory. Ph.D. Thesis, University of Saskatchewan, March 2012

    Google Scholar 

  18. Aldrovandi, R., Pereira, J.G.: An Introduction to Geometrical Physics, 2nd edn. World Scientific, Singapore (2017)

    MATH  Google Scholar 

  19. Barrett, J.F.: The hyperbolic theory of special relativity. arXiv:1102.0462[physics.gen-ph]

  20. Planck Collaboration. arXiv:1502.01589

  21. Adler, R.J., Overduin, J.M.: The nearly flat Universe. Gen. Rel. Grav. 37, 1491–1503 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Yan, M.-L., Xiao, N.-C., Huang, W., Hu, S.: Superluminal neutrinos from special relativity with de Sitter space-time symmetry. Mod. Phys. Lett. A 27, 1250076 (2012)

    Article  ADS  MATH  Google Scholar 

  23. Yan, M.-L., Hu, S., Huang, W., Xiao, N.-C.: On determination of the geometric cosmological constant from the OPERA experiment of superluminal neutrinos. Mod. Phys. Lett. A 27, 1250041 (2012)

    Article  ADS  Google Scholar 

  24. Yan, M.-L.: Evidence for special relativity with de Sitter space-time symmetry. Chin. Phys. C. 35, 228–232 (2011)

    Article  ADS  Google Scholar 

  25. Feng, S.-S., Yan, M.-L.: Implication of spatial and temporal variations of the fine-structure constant. Int. J. Theor. Phys. 55(2), 1049–1083 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tretyakova, D.A.: Seeking for the observational manifestation of de Sitter relativity. Grav. Cosm. 22, 339–344 (2016)

    Article  ADS  Google Scholar 

  27. Chang, Z., Chen, S.-X., Huang, C.-G.: Absence of GZK Cutoff and test of de Sitter invariant special relativity. Chin. Phys. Lett. 22, 791–794 (2005)

    Article  ADS  Google Scholar 

  28. Bojowald, M.: Quantum cosmology: a review. Rep. Prog. Phys. 78, 2 (2015)

    Article  MathSciNet  Google Scholar 

  29. Bojowald, M.: Quantum Cosmology: A Fundamental Description of the Universe. Springer (2011)

    Google Scholar 

  30. Hartle, J.B., Hawking, S.W.: Wave function of the Universe. Phys. Rev. D 28, 12 (1983)

    Article  MathSciNet  Google Scholar 

  31. Vilenkin, A.: Creation of Universes from nothing. Phys. Lett. 117b, 1/2 (1982)

    Google Scholar 

  32. Gazeau, J.P., Lachieze Rey, M.: Quantum field theory in de Sitter space: a survey of recent approaches. arXiv:hep-th/0610296 (2006)

  33. Giddins, S.B., Marolf, D.: A global picture of quantum de Sitter space. Phys. Rev. D 76, 064023 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Takook, M.V.: Quantum field theory in de Sitter Universe: ambient space formalism. arXiv:1403.1204 [gr-qc] (2014)

  35. Parsamehr, S., Enayati, M., Takook, M.V.: Super-gauge Field in de Sitter Universe. arXiv:1504.00453 [gr-qc] (2015)

  36. Albrecht, A., Holman, R., Richard, B.J.: Equilibration of a quantum field in de Sitter space-time. Phys. Rev. D 91, 043517 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. t’Hooft, G.: Dimensional Reduction in Quantum Gravity. arXiv:gr-qc/9310026 (1993)

  38. Susskind, L.: World as a hologram. J. Math. Phys. 36, 6377–6396 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74(3), 825–874 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Page, D.N.: Susskind’s challenge to the Hartle–Hawking no-boundary proposal and possible resolutions. JCAP 0701 (2007)

    Google Scholar 

  41. Maldacena, J.: The large-N limit of superconformal field theories and supergravity. Int. Jour. Theor. Phys. 38(4), 1113–1133 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Braga, N.R.F.: Quantum fields in Anti-de Sitter space and the Maldacena conjecture. Braz. J. Phys. 32(4), 880–883 (2002)

    Google Scholar 

  43. Strominger, A.: The dS/CFT correspondence. JHEP 10, 034 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  44. Witten, E.: Anti De Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Pourhasan, R., Afshordi, N., Mann, R.B.: Out of the white hole: a holographic origin for the big bang. JCAP 1404 (2014)

    Google Scholar 

  46. Smrz, P.K.: Geometrical models of elementary particles. Aust. J. Phys. 48(6), 1045–1054 (1995)

    Article  ADS  Google Scholar 

  47. Guo, H., Huang, C., Tian, Y., Xu, Z., Zhou, B.: Snyder’s quantized space-time and de Sitter special relativity. Front. Phys. China 2(3), 358–363 (2007)

    Article  ADS  Google Scholar 

  48. Licata, I.: Universe without singularities. A group approach to De Sitter cosmology. Electr. J. Theor. Phys. 3(10), 211–224 (2006)

    Google Scholar 

  49. Rajaraman, R.: Solitons and Istantons 15. North-Holland Publ, New York (1982)

    Google Scholar 

  50. Rugh, S.E., Zinkernagel, H.: Weyl’s Principle, Cosmic Time and Quantum Fundamentalism. arXiv:1006.5848 [gr-qc] (2010)

  51. Hawking, S.W.: Particle creation by black holes. Comm. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  52. Frolov, V.P., Markov, M.A., Mukhanov, V.F.: Black holes as possible sources of closed and semiclosed worlds. Phys. Rev. D 41, 2 (1990)

    Article  MathSciNet  Google Scholar 

  53. Borde, A., Guth, A., Vilenkin, A.: Inflationary spacetimes are not past-complete. Phys. Rev. Lett. 90, 151301 (2003)

    Article  ADS  Google Scholar 

  54. Hawking, S.W., Moss, I.G.: Fluctuations in the very early universe. Nucl. Phys. B 224, 180 (1983)

    Article  ADS  Google Scholar 

  55. Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University Press (1979)

    Google Scholar 

  56. Tod, P.: Penrose’s Weyl curvature hypothesis and conformally-cyclic cosmology. J. Phys. Conf. Ser. 229 (2010)

    Google Scholar 

  57. Aldrovandi, R., Pereira, J.G.: De Sitter relativity: a new road to quantum gravity? Found. Phys. 39, 1–9 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Aldrovandi, R., Pereira, J.G.: Is physics asking for a new kinematics? Int. J. Mod. Phys. D 17, 2485 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Beltrán Almeida, J.P., Mayor, C.S.O., Pereira J.G.: De Sitter relativity: a natural scenario for an evolving Λ. Grav. Cosmology 18(3), 181–187 (2012)

    Google Scholar 

  60. Aldrovandi, R., Beltrán Almeida, J.P., Pereira, J.G.: Some implications of the cosmological constant to fundamental physics. AIP Conf. Proc. 910, 381 (2007)

    Google Scholar 

  61. Chiatti, L.: De Sitter relativity and cosmological principle. TOAAJ 4, 27–37 (2011)

    Article  Google Scholar 

  62. Guo, H.-Y., Huang, C.-G., Xu, Z., Zhou, B.: On special relativity with cosmological constant. Phys. Lett. A 331, 1–7 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Cacciatori, S., Gorini, V., Kamenshchik, A.: Special relativity in the 21st century. Ann. Der Physik 17, 728–768 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Gazeau, J.P., Lachiéze-Rey, M.: Quantum field theory in de Sitter space: a survey of recent approaches. arXiv:hep-th/0610296 (2006)

  65. Giddings, S.B., Marolf, D.: A Global picture of quantum de Sitter space. Phys. Rev. D 76, 064023 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  66. Castro, A., Maloney, A.: The wave function of quantum de Sitter. arXiv:1209.5757 [hep-th]

  67. Mbarek, S., Paranjape, M.B.: Negative mass bubbles in de Sitter space-time. Phys. Rev. D 90, 101502(R) (2014)

    Article  ADS  Google Scholar 

  68. Verdaguer, E.: Gravitational fluctuations in de Sitter cosmology. J. Phys. Conf. Ser. 314(1), 012008 (2011)

    Article  Google Scholar 

  69. Momen, A., Rahman, R.: Spacetime Dimensionality from de Sitter Entropy. arXiv:1106.4548 [hep-th]

  70. Lev, F.M.: Positive cosmological constant and quantum theory. Symmetry 2(4), 1945–1980 (2010)

    Article  MathSciNet  Google Scholar 

  71. Dolce, D.: Classical geometry to quantum behavior correspondence in a virtual extra dimension. Ann. Phys. 327(9), 2354–2387 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Vistarini, T.: Holographic space and time: Emergent in what sense?. Stud. Hist. Phil. Sci, B (first on line (2016)

    Google Scholar 

  73. Chiatti, L.: Choosing the right relativity for QFT. In: Licata, I., Sakaji, A. (eds.) Vision of Oneness, pp. 365–398. Aracne Editrice, Roma. arXiv:0902.1293 [physics.gen-ph] (2011)

  74. Licata, I.: In and out of the screen. On some new considerations about localization and delocalization in Archaic Theory. In: Licata, I. (ed.) Beyond Peaceful Coexistence. The Emergence of Space, Time and Quantum, pp. 559–577. Imperial College Press (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Licata .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Licata, I., Chiatti, L., Benedetto, E. (2017). De Sitter Relativity: A Sixty-Year-Long Story. In: De Sitter Projective Relativity. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-52271-5_1

Download citation

Publish with us

Policies and ethics