Skip to main content

Experimental Methods

  • Chapter
  • First Online:
Active Metamaterials
  • 1214 Accesses

Abstract

This chapter covers modeling, simulations, and test techniques to successfully design and implement metamaterials for terahertz frequencies. Modeling and simulation of metamaterials is briefly covered in Sect. 3.1 with emphasis on the choice of boundary conditions to leverage the symmetry of metamaterial structures and thus dramatically reduce simulation time and solid-state memory requirements. Section 3.2 covers fabrication techniques using commercial foundry process with 45 nm CMOS technology as an example. Few case studies on terahertz metamaterials are covered to showcase the power of using commercial semiconductor process for designing terahertz metamaterials. Finally, Sect. 3.3 covers test and characterization methods in detail to give the reader a solid background on characterizing terahertz metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Smith, S. Schultz, P. Marko, C.M. Soukoulis, Phys. Rev. B 65 (19), 195104 (2002)

    Article  Google Scholar 

  2. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90 (10), 107401 (2003)

    Article  Google Scholar 

  3. X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco, J.A. Kong, Phys. Rev. E 70 (1), 016608 (2004)

    Article  Google Scholar 

  4. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71 (3), 036617 (2005)

    Article  Google Scholar 

  5. X. Chen, B.I. Wu, J.A. Kong, T.M. Grzegorczyk, Phys. Rev. E 71 (4), 046610 (2005)

    Article  Google Scholar 

  6. MICROWAVE STUDIO is the trademark of CST GmbH, Darmstadt, Germany (2014)

    Google Scholar 

  7. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (25), 4773 (1996)

    Article  Google Scholar 

  8. V.M. Shalaev, W. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30 (24), 3356 (2005)

    Article  Google Scholar 

  9. W.J. Padilla, D.N. Basov, D.R. Smith, Mater. Today 9 (7–8), 28 (2006)

    Article  Google Scholar 

  10. D. Mittleman, Sensing with Terahertz Radiation (Springer, Berlin, 2013)

    Google Scholar 

  11. M. Tonouchi, Nat. Photonics 1 (2), 97 (2007)

    Article  Google Scholar 

  12. W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y.R. Shen, A.M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S.Y. Wang, R.S. Williams, Appl. Phys. A 87 (2), 143 (2007)

    Article  Google Scholar 

  13. N. Dutta, S. Shi, D. Prather, in CLEO:2011 - Laser Applications to Photonic Applications (2011), paper CMV3 (Optical Society of America, 2011), p. CMV3

    Google Scholar 

  14. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272 (5258), 85 (1996)

    Article  Google Scholar 

  15. J.D. Albrecht, M.J. Rosker, H.B. Wallace, T.H. Chang, in 2010 IEEE MTT-S International Microwave Symposium Digest (MTT) (2010), pp. 1118–1121

    Google Scholar 

  16. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 2007)

    Google Scholar 

  17. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Cengage Learning, New Delhi, 2011)

    MATH  Google Scholar 

  18. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander, C.A. Ward, Appl. Opt. 22 (7), 1099 (1983)

    Article  Google Scholar 

  19. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, D. Smith, Science 314 (5801), 977 (2006)

    Article  Google Scholar 

  20. R. Liu, A. Degiron, J.J. Mock, D.R. Smith, Appl. Phys. Lett. 90 (26), 263504 (2007)

    Article  Google Scholar 

  21. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, D.R. Smith, N.M. Jokerst, S.A. Cummer, Opt. Express 16 (13), 9746 (2008)

    Article  Google Scholar 

  22. D. Shrekenhamer, S. Rout, A.C. Strikwerda, C. Bingham, R.D. Averitt, S. Sonkusale, W.J. Padilla, Opt. Express 19 (10), 9968 (2011)

    Article  Google Scholar 

  23. D.H. Auston, A.M. Glass, P. LeFur, Appl. Phys. Lett. 23 (1), 47 (1973)

    Article  Google Scholar 

  24. D.H. Auston, K.P. Cheung, JOSA B 2 (4), 606 (1985)

    Article  Google Scholar 

  25. A.P. DeFonzo, M. Jarwala, C. Lutz, Appl. Phys. Lett. 50 (17), 1155 (1987)

    Article  Google Scholar 

  26. P.R. Smith, D.H. Auston, M.C. Nuss, IEEE J. Quantum Electron. 24 (2), 255 (1988)

    Article  Google Scholar 

  27. C. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54 (6), 490 (1989)

    Article  Google Scholar 

  28. D. Grischkowsky, S. Keiding, M.v. Exter, C. Fattinger, J. Opt. Soc. Am. B 7 (10), 2006 (1990)

    Google Scholar 

  29. B.B. Hu, M.C. Nuss, Opt. Lett. 20 (16), 1716 (1995)

    Article  Google Scholar 

  30. D.E. Spence, P.N. Kean, W. Sibbett, Opt. Lett. 16 (1), 42 (1991)

    Article  Google Scholar 

  31. R.L. Fork, B.I. Greene, C.V. Shank, Appl. Phys. Lett. 38 (9), 671 (1981)

    Article  Google Scholar 

  32. S. Tsuda, W.H. Knox, E.A.d. Souza, W.Y. Jan, J.E. Cunningham, Opt. Lett. 20 (12), 1406 (1995)

    Google Scholar 

  33. D. Auston, IEEE J. Quantum Electron. 19 (4), 639 (1983)

    Article  Google Scholar 

  34. D.H. Auston, K.P. Cheung, P.R. Smith, Appl. Phys. Lett. 45 (3), 284 (1984)

    Article  Google Scholar 

  35. N. Katzenellenbogen, D. Grischkowsky, Appl. Phys. Lett. 58 (3), 222 (1991)

    Article  Google Scholar 

  36. M. van Exter, D.R. Grischkowsky, IEEE Trans. Microwave Theory Tech. 38 (11), 1684 (1990)

    Article  Google Scholar 

  37. S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whitaker, G.A. Mourou, F.W. Smith, A.R. Calawa, Appl. Phys. Lett. 59 (25), 3276 (1991)

    Article  Google Scholar 

  38. F.E. Doany, D. Grischkowsky, C.C. Chi, Appl. Phys. Lett. 50 (8), 460 (1987)

    Article  Google Scholar 

  39. M.C. Nuss, J. Orenstein, in Millimeter and Submillimeter Wave Spectroscopy of Solids, ed. by P.D.G. Grner. Topics in Applied Physics, vol. 74 (Springer, Berlin/Heidelberg, 1998), pp. 7–50

    Google Scholar 

  40. G.W. Chantry, H.M. Evans, J.W. Fleming, H.A. Gebbie, Infrared Phys. 9 (1), 31 (1969)

    Article  Google Scholar 

  41. K.G. Libbrecht, E.D. Black, C.M. Hirata, Am. J. Phys. 71 (11), 1208 (2003)

    Article  Google Scholar 

  42. J.H. Scofield, Am. J. Phys. 62 (2), 129 (1994)

    Article  Google Scholar 

  43. M.L. Meade, J. Phys. E: Sci. Instrum. 15 (4), 395 (1982)

    Article  Google Scholar 

  44. L. Ning, S. Jingling, S. Jinhai, L. Laishun, X. Xiaoyu, L. Meihong, J. Yan, Opt. Express 13 (18), 6750 (2005)

    Article  Google Scholar 

  45. K.A. McIntosh, E.R. Brown, K.B. Nichols, O.B. McMahon, W.F. DiNatale, T.M. Lyszczarz, Appl. Phys. Lett. 67 (26), 3844 (1995)

    Article  Google Scholar 

  46. A. Roggenbuck, H. Schmitz, A. Deninger, I.C. Mayorga, J. Hemberger, R. Gusten, M. Gruninger, New J. Phys. 12 (4), 043017 (2010)

    Article  Google Scholar 

  47. A.J. Deninger, T. Gbel, D. Schnherr, T. Kinder, A. Roggenbuck, M. Káberle, F. Lison, T. Mller-Wirts, P. Meissner, Rev. Sci. Instrum. 79 (4), 044702 (2008).

    Article  Google Scholar 

  48. M. McGehee, M. Diaz-Garcia, R. Gupta, F. Hide, A.J. Heeger, in IEEE Lasers and Electro-Optics Society Annual Meeting, 1997. LEOS ’97 10th Annual Meeting. Conference Proceedings, vol. 2 (1997), pp. 172–174

    Google Scholar 

  49. I.S. Gregory, M.J. Evans, H. Page, S. Malik, I. Farrer, H.E. Beere, Appl. Phys. Lett. 91 (15), 154103 (2007)

    Article  Google Scholar 

  50. M. Scheller, M. Stecher, M. Gerhard, M. Koch, Opt. Express 18 (15), 15887 (2010)

    Article  Google Scholar 

  51. S. Kraft, A. Deninger, C. Trck, J. Fortgh, F. Lison, C. Zimmermann, Laser Phys. Lett. 2 (2), 71 (2004)

    Article  Google Scholar 

  52. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, B. Sartorius, J. Infrared Millimeter Terahertz Waves 32 (2), 225 (2010)

    Article  Google Scholar 

  53. R. Mendis, C. Sydlo, J. Sigmu nd, M. Feiginov, P. Meissner, H.L. Hartnagel, IEEE Antennas Wirel. Propag. Lett. 4, 85 (2005)

    Google Scholar 

  54. C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Nat. Photonics 8, 605 (2014)

    Article  Google Scholar 

  55. S. Rout, S. Sonkusale, Opt. Express 24 (13), 14618 (2016)

    Article  Google Scholar 

  56. S. Rout, S.R. Sonkusale, APL Photon. 1 (8), 086102 (2016)

    Article  Google Scholar 

  57. C. Bond, C.A. Pipan, How to align an off-axis parabolic mirror, in Proceedings of SPIE, vol. 1113. doi:10.1117/12.955592; Reflective Optics II, 236 (October 11, 1989)

  58. Y.H. Lee, Opt. Eng. 31 (11), 2287 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rout, S., Sonkusale, S. (2017). Experimental Methods. In: Active Metamaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-52219-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52219-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52218-0

  • Online ISBN: 978-3-319-52219-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics