Skip to main content

Female and Male Gametogenesis

  • Chapter
  • First Online:
Clinical Reproductive Medicine and Surgery

Abstract

The physiology of gamete development is at the core of understanding reproductive medicine. In humans, oogenesis begins approximately 3 weeks after fertilization. Primordial germ cells (PGCs), arising from the yolk sac, migrate to the genital ridge. PGCs undergo rapid mitotic division and give rise to oogonia. Follicle formation begins at around 16–18 weeks of fetal life. The process of meiosis, which is unique to germ cells, ultimately results in the formation of a single haploid ovum. Meiotic progression of the oocyte is dependent on a delicate balance between factors keeping the oocyte in meiotic rest and factors promoting oocyte maturation. Follicles are recruited from this primordial pool and induced to grow. A single follicle containing a mature oocyte will be selected from this cohort to become the dominant follicle, which is eventually ovulated and capable of fertilization.

The testis is an immune-privileged site. The seminiferous tubules are the site of sperm production. The process of differentiation of a spermatogonium into a spermatid is known as spermatogenesis. It involves both mitotic and meiotic proliferation as well as extensive cell remodeling. In humans, the process of spermatogenesis starts at puberty and continues throughout the entire life. Spermatozoa undergo a series of cellular or physiologic changes such as capacitation and the acrosome reaction before they can fertilize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Oogenesis:

The process by which the mature ovum is differentiated

Follicle:

Aggregation of cells that contains a single oocyte

Oocyte:

Female germ cell, mostly found in the ovary in its preovulatory state arrested in the first meiotic prophase

Ovulation:

Release of the mature egg from the ovary

Spermatogenesis:

The process of differentiation of a spermatogonium into a spermatid

Sperm: male haploid germ cell

Fertilization:

The fusion of gametes into a diploid cell, called a zygote

References

  1. Yao MWM, Batchu K. Oogenesis. In: Falcone T, Hurd WW, editors. Clinical reproductive medicine and surgery. 1st ed. Philadelphia: Mosby/Elsevier; 2007. p. 51–67.

    Google Scholar 

  2. Coutsoukis P. The ovaries 2007 [cited 31 2012]. ► http://www.theodora.com/anatomy/the_ovaries.html.

  3. Body GS, Aot H. The ovaries [Online Webpage]. 2009 [cited 31 2012]. ► http://education.yahoo.com/reference/gray/subjects/subject/266.

  4. Heffner LJ, Schust DJ. The reproductive system at a glance. 3rd ed. New York: Wiley; 2010.

    Google Scholar 

  5. Histology test atlas book. Chapter 18: The female reproductive system. ► http://www.visualhistology.com/products/atlas/VHA_Chpt18_The_Female_Reproductive_System.html.

  6. Fujimoto T, Miyayama Y, Fuyuta M. The origin, migration and fine morphology of human primordial germ cells. Anat Rec. 1977;188(3):315–30.

    Article  CAS  PubMed  Google Scholar 

  7. Gondos B, Bhiraleus P, Hobel CJ. Ultrastructural observations on germ cells in human fetal ovaries. Am J Obstet Gynecol. 1971;110(5):644–52.

    Article  CAS  PubMed  Google Scholar 

  8. Gondos B, Westergaard L, Byskov AG. Initiation of oogenesis in the human fetal ovary: ultrastructural and squash preparation study. Am J Obstet Gynecol. 1986;155(1):189–95.

    Article  CAS  PubMed  Google Scholar 

  9. Witschi E. Migration of the germ cells of human embryo from the yolk sac to the primitive gonadal folds. Contrib Embryol Carnegie Inst. 1948;32:69–80.

    Google Scholar 

  10. Byskov AG. Differentiation of mammalian embryonic gonad. Physiol Rev. 1986;66(1):71–117.

    CAS  PubMed  Google Scholar 

  11. Goto T, Adjaye J, Rodeck CH, Monk M. Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis. Mol Hum Reprod. 1999;5(9):851–60.

    Article  CAS  PubMed  Google Scholar 

  12. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963;158:417–33.

    Article  CAS  PubMed  Google Scholar 

  13. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55.

    Article  CAS  PubMed  Google Scholar 

  14. Hardy K, Wright CS, Franks S, Winston RM. In vitro maturation of oocytes. Br Med Bull. 2000;56(3):588–602.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708.

    Article  PubMed  Google Scholar 

  16. Paulson RJ. Oocytes from development to fertilization. 3rd ed. Boston, MA: Blackwell; 1991.

    Google Scholar 

  17. University of Alabama at Birmingham. Oogenesis 2012 [cited 21 2012]. ► http://main.uab.edu/show.asp?durki=19786.

  18. Gilbert S. Developmental biology. 6th ed. Sinauer: Sunderland, MA; 2000.

    Google Scholar 

  19. Canipari R. Oocyte–granulosa cell interactions. Hum Reprod Update. 2000;6(3):279–89.

    Article  CAS  PubMed  Google Scholar 

  20. Durinzi K, Saniga E, Lanzendorf S. The relationship between size and maturation in vitro in the unstimulated human oocyte. Fertil Steril. 1995;63:404–6.

    Article  CAS  PubMed  Google Scholar 

  21. Eppig J, Wigglesworth K, Pendola F. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A. 2002;99:2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matzuk M, Burns K, Viveiros M, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296:2178–80.

    Article  CAS  PubMed  Google Scholar 

  23. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14.

    CAS  PubMed  Google Scholar 

  24. Zeleznik AJ. The physiology of follicle selection. Reprod Biol Endocrinol. 2004;2:31.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  26. Vegetti W. FSH and folliculogenesis: from physiology to ovarian stimulation. Reprod BioMed Online. 2006;12(6):684–94.

    Article  CAS  PubMed  Google Scholar 

  27. Van Fauser BC, Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev. 1997;18(1):71–106.

    Google Scholar 

  28. Sullivan MW, Stewart-Akers A, Krasnow JS, Berga SL, Zeleznik AJ. Ovarian responses in women to recombinant follicle-stimulating hormone and luteinizing hormone (LH): a role for LH in the final stages of follicular maturation. J Clin Endocrinol Metab. 1999;84(1):228–32.

    CAS  PubMed  Google Scholar 

  29. Zeleznik AJ, Hillier SG. The role of gonadotropins in the selection of the preovulatory follicle. Clin Obstet Gynecol. 1984;27(4):927–40.

    Article  CAS  PubMed  Google Scholar 

  30. Zelinski-Wooten MB, Hess DL, Wolf DP, Stouffer RL. Steroid reduction during ovarian stimulation impairs oocyte fertilization, but not folliculogenesis, in rhesus monkeys. Fertil Steril. 1994;61(6):1147–55.

    Article  CAS  PubMed  Google Scholar 

  31. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  33. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88(4):399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod. 1990;43(4):543–7.

    Article  CAS  PubMed  Google Scholar 

  35. Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ. FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol. 1990;138(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  36. Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod. 1989;41(2):268–76.

    Article  CAS  PubMed  Google Scholar 

  37. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123(5):613–20.

    Article  CAS  PubMed  Google Scholar 

  38. Murray A, Spears N. Follicular development in vitro. Semin Reprod Med. 2000;18(2):109–22.

    Article  CAS  PubMed  Google Scholar 

  39. Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. Bioessays. 1991;13(11):569–74.

    Article  CAS  PubMed  Google Scholar 

  40. Downs SM, Hunzicker-Dunn M. Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte-cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate. Dev Biol. 1995;172(1):72–85.

    Article  CAS  PubMed  Google Scholar 

  41. Fagbohun CF, Downs SM. Metabolic coupling and ligand-stimulated meiotic maturation in the mouse oocyte-cumulus cell complex. Biol Reprod. 1991;45(6):851–9.

    Article  CAS  PubMed  Google Scholar 

  42. Granot I, Dekel N. Phosphorylation and expression of connexin-43 ovarian gap junction protein are regulated by luteinizing hormone. J Biol Chem. 1994;269(48):30502–9.

    CAS  PubMed  Google Scholar 

  43. Eppig J. Mouse oocytes control metabolic co-operativity between oocytes and cumulus cells. Reprod Fertil Dev. 2005;17(1–2):1–2.

    Article  PubMed  Google Scholar 

  44. Zheng P, Dean J. Oocyte-specific genes affect folliculogenesis, fertilization, and early development. Semin Reprod Med. 2007;25(4):243–51.

    Article  CAS  PubMed  Google Scholar 

  45. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.

    Article  CAS  PubMed  Google Scholar 

  46. Coskun S, Uzumcu M, Lin YC, Friedman CI, Alak BM. Regulation of cumulus cell steroidogenesis by the porcine oocyte and preliminary characterization of oocyte-produced factor(s). Biol Reprod. 1995;53(3):670–5.

    Article  CAS  PubMed  Google Scholar 

  47. Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod. 2005;73(2):351–7.

    Article  CAS  PubMed  Google Scholar 

  48. Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226(2):167–79.

    Article  CAS  PubMed  Google Scholar 

  49. Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature. 1997;385(6616):525–9.

    Article  CAS  PubMed  Google Scholar 

  50. Juneja SC, Barr KJ, Enders GC, Kidder GM. Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod. 1999;60(5):1263–70.

    Article  CAS  PubMed  Google Scholar 

  51. Lampe PD, Lau AF. Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys. 2000;384(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  52. Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol. 2004;36(7):1171–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rankin T, Soyal S, Dean J. The mouse zona pellucida: folliculogenesis, fertility and pre-implantation development. Mol Cell Endocrinol. 2000;163(1–2):21–5.

    Article  CAS  PubMed  Google Scholar 

  54. Soyal SM, Amleh A, Dean J. Figalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development. 2000;127(21):4645–54.

    CAS  PubMed  Google Scholar 

  55. Heikinheimo O, Gibbons WE. The molecular mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine. Mol Hum Reprod. 1998;4(8):745–56.

    Article  CAS  PubMed  Google Scholar 

  56. Jamnongjit M, Hammes SR. Oocyte maturation: the coming of age of a germ cell. Semin Reprod Med. 2005;23(3):234–41.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130(6):791–9.

    Article  CAS  PubMed  Google Scholar 

  58. Rajesh C, Pittman DL. Cell cycle regulation in mammalian germ cells. Results Probl Cell Differ. 2006;42:343–67.

    Article  PubMed  Google Scholar 

  59. Sun QY, Miao YL, Schatten H. Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle. 2009;8(17):2741–7.

    Article  CAS  PubMed  Google Scholar 

  60. Tripathi A, Kumar KV, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 2010;223(3):592–600.

    CAS  PubMed  Google Scholar 

  61. Zhang M, Xia G. Hormonal control of mammalian oocyte meiosis at diplotene stage. Cell Mol Life Sci. 2012;69(8):1279–88.

    Article  CAS  PubMed  Google Scholar 

  62. Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL. Cyclin is a component of maturation-promoting factor from Xenopus. Cell. 1990;60(3):487–94.

    Article  CAS  PubMed  Google Scholar 

  63. Jones KT. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol Hum Reprod. 2004;10(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  64. Bowen R. Gonadotropins: luteinizing and follicle stimulating hormones. Colorado State University; 2006 [updated 30 April 2006; cited 29 2012]. ► http://www.vivo.colostate.edu/hbooks/pathphys/endocrine/hypopit/lhfsh.html.

  65. Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology and pathophysiology. Endocr Rev. 1997;18(6):739.

    CAS  PubMed  Google Scholar 

  66. Williams CJ, Erickson GF. Morphology and physiology of the ovary. Endotext.org; 2012. ►http://www.endotext.org/female/female1/femaleframe1.htm.

  67. Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-mullerian hormone. Reproduction. 2002;124:601–9.

    Article  CAS  PubMed  Google Scholar 

  68. Visser JA, de Jong FH, Laven JS, Themmen AP. Anti-Mullerian hormone: a new marker for ovarian function. Reproduction. 2006;131(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  69. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follcile recruitment. Mol Hum Reprod. 2003;10(2):77–83.

    Article  Google Scholar 

  70. Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72–101.

    Article  CAS  PubMed  Google Scholar 

  71. Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci U S A. 1999;96:7282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee WS, Otsuka F, Moore RK, Shimasaki S. The effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod. 2001;65:994–9.

    Article  CAS  PubMed  Google Scholar 

  73. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383(6600):531–5.

    Article  CAS  PubMed  Google Scholar 

  74. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000;25(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  75. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;1:316.

    Article  Google Scholar 

  76. Systems RD. BMPs influence FSH synthesis [Online Website]. Technical Information > Literature > Cytokine Bulletin [cited 21 2012]. ► http://www.rndsystems.com/cb_detail_objectname_FA01_BMPs.aspx.

  77. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140:489–504.

    Article  CAS  PubMed  Google Scholar 

  78. Carlsson IB, Laitinen MP, Scott JE, Louhio H, Velentzis L, Tuuri T, et al. Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction. 2006;131(4):641–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hutt KJ, McLaughlin EA, Holland MK. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod. 2006;12(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  80. Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res. 1951;95(6):63–108.

    Google Scholar 

  81. Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod. 2009;80(1):2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Virant-Klun I, Stimpfel M, Skutella T. Stem cells in adult human ovaries: from female fertility to ovarian cancer. Curr Pharm Des. 2012;18(3):283–92.

    Article  CAS  PubMed  Google Scholar 

  83. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145–50.

    Article  CAS  PubMed  Google Scholar 

  84. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Virant-Klun I, Stimpfel M, Skutella T. Ovarian pluripotent/multipotent stem cells and in vitro oogenesis in mammals. Histol Histopathol. 2011;26(8):1071–82.

    PubMed  Google Scholar 

  86. Tilly JL, Telfer EE. Purification of germline stem cells from adult mammalian ovaries: a step closer towards control of the female biological clock? Mol Hum Reprod. 2009;15(7):393–8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, et al. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update. 2010;16(4):395–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A, et al. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod Biol Endocrinol. 2010;8:119.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hornick JE, Duncan FE, Shea LD, Woodruff TK. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod. 2012;27(6):1801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kreeger PK, Deck JW, Woodruff TK, Shea LD. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials. 2006;27(5):714–23.

    Article  CAS  PubMed  Google Scholar 

  91. Shikanov A, Smith RM, Xu M, Woodruff TK, Shea LD. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials. 2011;32(10):2524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007;28(30):4439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006;12(10):2739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009;81(3):587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Middendorff R, Muller D, Mewe M, Mukhopadhyay AK, Holstein AF, Davidoff MS. The tunica albuginea of the human testis is characterized by complex contraction and relaxation activities regulated by cyclic GMP. J Clin Endocrinol Metab. 2002;87:3486–99.

    Article  CAS  PubMed  Google Scholar 

  96. de Kretser DM, Temple-Smith PD, Kerr JB. Anatomical and functional aspects of the male reproductive organs. In: Bandhauer K, Fricks J, editors. Handbook of urology. Berlin: Springer; 1982 . p. 1–31.Chapter 16

    Google Scholar 

  97. de Kretser DM, Kerr JB. The cytology of the testis. In: Knobill E, Neil JD, editors. The physiology of reproduction. New York: Raven; 1994. p. 1177–290.

    Google Scholar 

  98. Christensen AK. Leydig cells. In: Hamilton DW, Greep RO, editors. Handbook of physiology. Baltimore: Williams & Wilkins; 1975. p. 57–94.

    Google Scholar 

  99. Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat. 1963;112:35–51.

    Article  CAS  PubMed  Google Scholar 

  100. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52:198–236.

    CAS  PubMed  Google Scholar 

  101. Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec. 1971;169:533–57.

    Article  CAS  PubMed  Google Scholar 

  102. Dym M, Fawcett DW. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod. 1971;4:195–215.

    Article  CAS  PubMed  Google Scholar 

  103. Paulson JR, Laemmli UK. The structure of histone-depleted metaphase chromosomes. Cell. 1977;12:817–28.

    Article  CAS  PubMed  Google Scholar 

  104. Izaurralde E, Kas E, Laemmli UK. Highly preferential nucleation of histone H1 assembly on scaffold-associated regions. J Mol Biol. 1989;210:573–85.

    Article  CAS  PubMed  Google Scholar 

  105. Adachi Y, Kas E, Laemmli UK. Preferential cooperative binding of DNA topoisomerase II to scaffold-associated regions. EMBO J. 1989;13:3997.

    Google Scholar 

  106. Giroux CN. Meiosis: components and process in nuclear differentiation. Dev Genet. 1992;13:387–91.

    Article  CAS  PubMed  Google Scholar 

  107. Auger J, Dadoune JP. Nuclear status of human sperm cells by transmission electron microscopy and image cytometry: changes in nuclear shape and chromatin texture during spermiogenesis and epididymal transit. Biol Reprod. 1993;49:166–75.

    Article  CAS  PubMed  Google Scholar 

  108. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139:287–301.

    Article  CAS  PubMed  Google Scholar 

  109. Braun RE. Packaging paternal chromosomes with protamine. Nat Genet. 2001;28:10–2.

    CAS  PubMed  Google Scholar 

  110. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8:227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Bedford JM, Calvin H, Cooper GW. The maturation of spermatozoa in the human epididymis. J Reprod Fertil Suppl. 1973;18:199–213.

    CAS  PubMed  Google Scholar 

  112. Russell L. Morphological and functional evidence for Sertoli-germ cell relationship. In: Russell LD, Griswold MD, editors. The Sertoli Cell. Clearwater, FL: Cache Press; 1993. p. 365–90.

    Google Scholar 

  113. Breucker H, Schafer E, Holstein AF. Morphogenesis and fate of the residual body in human spermiogenesis. Cell Tissue Res. 1985;240:303–9.

    Article  CAS  PubMed  Google Scholar 

  114. Clermont Y, Perey B. The stages of the cycle of the seminiferous epithelium of the rat: practical definitions in PA-Schiff-hematoxylin and hematoxylin-eosin stained sections. Rev Can Biol. 1957;16:451–62.

    CAS  PubMed  Google Scholar 

  115. Perey B, Clermont Y, LeBlonde CP. The wave of seminiferous epithelium in the rat. Am J Anat. 1961;108:47–77.

    Article  Google Scholar 

  116. Heller CH, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545–75.

    CAS  PubMed  Google Scholar 

  117. Schulze W, Rehder U. Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res. 1984;237:395–407.

    Article  CAS  PubMed  Google Scholar 

  118. World Health Organization. Laboratory manual for the examination of human semen and sperm–cervical mucus interaction. 4th ed. New York: Cambridge University Press; 1999.

    Google Scholar 

  119. World Health Organization. Laboratory manual for the examination of human semen and sperm–cervical mucus interaction. 5th ed. New York: Cambridge University Press; 2010.

    Google Scholar 

  120. Sharpe RM. Regulation of spermatogenesis. In: Knobill E, Neil JD, editors. The physiology of reproduction. New York: Raven; 1994. p. 1363–434.

    Google Scholar 

  121. Barros C, Franklin B. Behaviour of the gamete membranes during sperm entry into the mammalian egg. J Cell Biol. 1968;37:13.

    Article  Google Scholar 

  122. Bellve AR, Zheng W. Growth factors as autocrine and paracrine modulators of male gonadal functions. J Reprod Fertil. 1989;85:771–93.

    Article  CAS  PubMed  Google Scholar 

  123. Skinner MK. Cell-cell interactions in the testis. Endocr Rev. 1991;12:45–77.

    Article  CAS  PubMed  Google Scholar 

  124. Sharpe T. Intratesticular control of steroidogenesis. Clin Endocrinol. 1990;33:787–807.

    Article  CAS  Google Scholar 

  125. Bedford JM. Effect of duct ligation on the fertilizing capacity of spermatozoa in the epididymis. J Exp Zool. 1967;166:271–81.

    Article  CAS  PubMed  Google Scholar 

  126. Orgebin-Crist M. Maturation of spermatozoa in the rabbit epididymis: fertilizing ability and embryonic mortality in does inseminated with epididymal spermatozoa. Ann Biol Anim Biochim Biophys. 1967;7:373–9.

    Article  Google Scholar 

  127. Tredway DR, Settlage DS, Nakamura RM, Motoshima M, Umezaki CU, Mishell Jr DR. Significance of timing for the postcoital evaluation of cervical mucus. Am J Obstet Gynecol. 1975;121:387–93.

    Article  CAS  PubMed  Google Scholar 

  128. Mortimer D. Objective analysis of sperm motility and kinematics. In: Keel BA, Webster BW, editors. Handbook of laboratory diagnosis and treatment of infertility. Boca Raton: CRC; 1990. p. 97–133.

    Google Scholar 

  129. Katz DF, Drobnis E, Overstreet JW. Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res. 1989;22:443–69.

    Article  CAS  PubMed  Google Scholar 

  130. Mortimer D. Sperm transport in the human female reproductive tract. In: Finn CA, editor. Oxford reviews of reproductive biology. Oxford, UK: Oxford University Press; 1983 . p. 30–61.Chapter 5

    Google Scholar 

  131. Yanagamachi R. Mammalian fertilization. In: Knobill E, O’Brien NJ, editors. The physiology of reproduction. New York: Raven; 1994.

    Google Scholar 

  132. Thomas P, Meizel S. Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2+ influx. Biochem J. 1989;264:539–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Overstreet JW, Katz DF, Yudin AI. Cervical mucus and sperm transport in reproduction. Semin Perinatol. 1991;15:149–55.

    CAS  PubMed  Google Scholar 

  134. Parks JE, Ehrenwald E. Cholesterol efflux from mammalian sperm and its potential role in capacitation. In: Bavister BD, Cummins J, Roldan ERS, editors. Fertilization in mammals. Norwell, MA: Serono Symposia; 1990.

    Google Scholar 

  135. Benoff S, Hurley I, Cooper GW, Mandel FS, Hershlag A, Scholl GM, et al. Fertilization potential in vitro is correlated with head-specific mannose-ligand receptor expression, acrosome status and membrane cholesterol content. Hum Reprod. 1993;8:2155–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Desai PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Desai, N., Ludgin, J., Sharma, R., Anirudh, R.K., Agarwal, A. (2017). Female and Male Gametogenesis. In: Falcone, T., Hurd, W. (eds) Clinical Reproductive Medicine and Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-52210-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52210-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52209-8

  • Online ISBN: 978-3-319-52210-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics