Skip to main content

Preimplantation Genetic Diagnosis and Genetic Screening

  • Chapter
  • First Online:
Clinical Reproductive Medicine and Surgery

Abstract

There have been great advances in molecular screening and diagnostic techniques in the field of assisted reproductive technology and many of these advances have come in the field of reproductive genetics. Broadly, preimplantation genetic diagnostics can be utilized to identify a normal embryo amongst those which contain a single gene disorder (preimplantation genetic diagnosis—PGD) or can be utilized to identify embryos that have gained or are missing large segments of DNA or whole chromosomes (preimplantation genetic screening—PGS ). Both PGD and PGS have a wide variety of applications and can used to identify embryos which have the highest potential of forming a normal, healthy offspring. There are challenges in this process including safely obtaining genetic material in the form of an embryo biopsy as well as appropriately and accurate application of amplification and analysis strategies. With the advent of proper validation and utilization, both PGD and PGS have been shown to be useful in improving reproductive outcomes and will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Preimplantation genetic diagnosis:

Use of molecular genetics testing to determine if chromosomal disorders (single gene disorders) are present in embryos produced through IVF

Preimplantation genetic screening:

Use of molecular genetics testing to determine if an embryo produced through IVF has gained or is missing large portions of DNA or whole chromosomes

Blastomere biopsy:

The removal of one to two cells (blastomeres) from the embryo when it reaches the eight-cell stage

Trophectoderm biopsy:

The removal of five to ten cells (trophectoderm) from the embryo when it reaches the blastocyst stage on day 5 or day 6

Whole genome amplification (WGA):

term which encompasses several techniques used to amplify the entire genome, starting with very small amounts of DNA and amplifying it several fold

Microarray-based comparative genomic hybridization (aCGH):

Molecular testing technique which compares DNA content from two differentially labeled genomes: a test (or patient) and a reference (or control)

Single nucleotide polymorphism array (SNP array):

Molecular technique capable of detecting SNPs within a DNA sample utilizing array technology

Next generation sequencing (NGS):

Umbrella term, also called high-throughput sequencing, which describes several modern DNA analysis techniques which allow for increased speed and decreased cost of sequencing when compared to traditional Sanger sequencing

References

  1. Reindollar RH, et al. A randomized clinical trial to evaluate optimal treatment for unexplained infertility: the fast track and standard treatment (FASTT) trial. Fertil Steril. 2010;94:888–99.

    Article  PubMed  Google Scholar 

  2. Goldman MB, et al. A randomized clinical trial to determine optimal infertility treatment in older couples: the Forty and Over Treatment Trial (FORT-T). Fertil Steril. 2014;101:1574–1581.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2:366.

    Article  CAS  PubMed  Google Scholar 

  4. Handyside AH, et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344:768–70.

    Article  CAS  PubMed  Google Scholar 

  5. Treff NR, et al. Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays. Fertil Steril. 2010;94:2017–21.

    Article  CAS  PubMed  Google Scholar 

  6. Treff NR, et al. Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril. 2011;95:1606–12e1–2.

    Article  CAS  PubMed  Google Scholar 

  7. Scott RT, et al. Microarray based 24 chromosome preimplantation genetic diagnosis (mPGD) is highly predictive of the reproductive potential of human embryos: a prospective blinded non-selection trial. Fertil Steril. 2008;90:22.

    Article  Google Scholar 

  8. Scott RT, et al. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012;97:870–5.

    Article  PubMed  Google Scholar 

  9. Forman EJ, et al. Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210:157.e1–6.

    Article  PubMed  Google Scholar 

  10. Forman EJ, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100(1):100–7.e1.

    Article  PubMed  Google Scholar 

  11. Forman EJ, et al. Comprehensive chromosome screening and embryo selection: moving toward single euploid blastocyst transfer. Semin Reprod Med. 2012;30:236–42.

    Article  PubMed  Google Scholar 

  12. Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6:1055–62.

    Article  CAS  PubMed  Google Scholar 

  13. Fragouli E, et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23:2596–608.

    Article  CAS  PubMed  Google Scholar 

  14. Hassold T, Hunt P. To ERR (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2:280–91.

    Article  CAS  PubMed  Google Scholar 

  15. Fragouli E, Wells D. Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011;133:149–59.

    Article  CAS  PubMed  Google Scholar 

  16. Hassold T, Hunt P. Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. Curr Opin Pediatr. 2009;21:703–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Munne S, et al. Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril. 1995;64:382–91.

    Article  CAS  PubMed  Google Scholar 

  18. Mastenbroek S, et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357:9–17.

    Article  CAS  PubMed  Google Scholar 

  19. Fritz MA. Perspectives on the efficacy and indications for preimplantation genetic screening: where are we now? Hum Reprod. 2008;23:2617–21.

    Article  PubMed  Google Scholar 

  20. Kuliev A, Verlinsky Y. Preimplantation diagnosis: a realistic option for assisted reproduction and genetic practice. Curr Opin Obstet Gynecol. 2005;17:179–83.

    Article  PubMed  Google Scholar 

  21. Basille C, et al. Preimplantation genetic diagnosis: state of the art. Eur J Obstet Gynecol Reprod Biol. 2009;145:9–13.

    Article  CAS  PubMed  Google Scholar 

  22. Munné S, et al. First pregnancies after preconception diagnosis of translocations of maternal origin. Fertil Steril. 1998;69:675–81.

    Article  PubMed  Google Scholar 

  23. Munne S, et al. Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril. 2000;73:1209–18.

    Article  CAS  PubMed  Google Scholar 

  24. Scriven PN, et al. Chromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat Diagn. 1998;18:1437–49.

    Article  CAS  PubMed  Google Scholar 

  25. Rechitsky S, et al. Preimplantation genetic diagnosis for cancer predisposition. Reprod Biomed Online. 2002;5:148–55.

    Article  PubMed  Google Scholar 

  26. Verlinsky Y, et al. Preimplantation diagnosis for early-onset Alzheimer disease caused by V717 L mutation. JAMA. 2002;287:1018–21.

    Article  CAS  PubMed  Google Scholar 

  27. Ethics Committee of American Society for Reproductive Medicine. Use of preimplantation genetic diagnosis for serious adult onset conditions: a committee opinion. Fertil Steril. 2013;100:54–7.

    Article  Google Scholar 

  28. Shenfield F, et al. Taskforce 5: preimplantation genetic diagnosis. Hum Reprod. 2003;18:649–51.

    Article  CAS  PubMed  Google Scholar 

  29. Verlinsky Y, et al. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA. 2001;285:3130–3.

    Article  CAS  PubMed  Google Scholar 

  30. Kahraman S, et al. Seven years of experience of preimplantation HLA typing: a clinical overview of 327 cycles. Reprod Biomed Online. 2011;23:363–71.

    Article  CAS  PubMed  Google Scholar 

  31. Van de Velde H, et al. The experience of two European preimplantation genetic diagnosis centres on human leukocyte antigen typing. Hum Reprod. 2009;24:732–40.

    Article  PubMed  Google Scholar 

  32. Staessen C, et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomised controlled trial. Hum Reprod. 2004;19:2849–58.

    Article  PubMed  Google Scholar 

  33. Hardarson T, et al. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod. 2008;23:2806–12.

    Article  CAS  PubMed  Google Scholar 

  34. Debrock S, et al. Preimplantation genetic screening (PGS) for aneuploidy in embryos after in vitro fertilization (IVF) does not improve reproductive outcome in women over 35: a prospective controlled randomised study. Fertil Steril. 2007;88:S237.

    Article  Google Scholar 

  35. Meyer LR, et al. A prospective randomized controlled trial of preimplantation genetic screening in the “good prognosis” patient. Fertil Steril. 2009;91:1731–8.

    Article  PubMed  Google Scholar 

  36. Jansen RP, et al. What next for preimplantation genetic screening (PGS)? Experience with blastocyst biopsy and testing for aneuploidy. Hum Reprod. 2008;23:1476–8.

    Article  PubMed  Google Scholar 

  37. Staessen C, et al. Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod. 2008;23:2818–25.

    Article  CAS  PubMed  Google Scholar 

  38. Mersereau JE, et al. Preimplantation genetic screening in older women: a cost-effectiveness analysis. Fertil Steril. 2008;90:592–8.

    Article  PubMed  Google Scholar 

  39. Handyside AH, et al. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod. 2004;10:767–72.

    Article  CAS  PubMed  Google Scholar 

  40. Hu DG, et al. Aneuploidy detection in single cells using DNA array-based comparative genomic hybridization. Mol Hum Reprod. 2004;10:283–9.

    Article  CAS  PubMed  Google Scholar 

  41. Northrop LE, et al. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16:590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wells D, et al. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res. 1999;27:1214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sher G, et al. Oocyte karyotyping by comparative genomic hybrydization provides a highly reliable method for selecting “competent” embryos, markedly improving in vitro fertilization outcome: a multiphase study. Fertil Steril. 2007;87:1033–40.

    Article  CAS  PubMed  Google Scholar 

  44. Gutierrez-Mateo C, et al. Preimplantation genetic diagnosis of single-gene disorders: experience with more than 200 cycles conducted by a reference laboratory in the United States. Fertil Steril. 2009;92:1544–56.

    Article  CAS  PubMed  Google Scholar 

  45. Hellani A, et al. Multiple displacement amplification on single cell and possible PGD applications. Mol Hum Reprod. 2004;10(11):847–52.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson DS, et al. Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod. 2010;25:1066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Handyside AH, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47:651–8.

    Article  PubMed  Google Scholar 

  48. Traversa MV, et al. The genetic screening of preimplantation embryos by comparative genomic hybridisation. Reprod Biol. 2011;11(Suppl 3):51–60.

    PubMed  Google Scholar 

  49. Treff NR, et al. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 2013;99:1377–1384.e6.

    Article  CAS  PubMed  Google Scholar 

  50. Forman EJ, et al. Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer. Fertil Steril. 2013;100:718–24.

    Article  PubMed  Google Scholar 

  51. Treff NR, Scott RT Jr. Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity. J Assist Reprod Genet. 2012;29:381–90.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ginsburg ES, et al. Use of preimplantation genetic diagnosis and preimplantation genetic screening in the United States: a Society for Assisted Reproductive Technology Writing Group paper. Fertil Steril. 2011;96:865–8.

    Article  PubMed  Google Scholar 

  53. Goossens V, et al. ESHRE PGD Consortium data collection XI: cycles from January to December 2008 with pregnancy follow-up to October 2009. Hum Reprod. 2012;27:1887–911.

    Article  CAS  PubMed  Google Scholar 

  54. Klitzman R, et al. Views of internists towards uses of PGD. Reprod Biomed Online. 2013;26:142–7.

    Article  PubMed  Google Scholar 

  55. Harton GL, et al. ESHRE PGD consortium/embryology special interest group—best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod. 2011;26:41–6.

    Article  CAS  PubMed  Google Scholar 

  56. Dokras A, et al. Trophectoderm biopsy in human blastocysts. Hum Reprod. 1990;5:821–5.

    Article  CAS  PubMed  Google Scholar 

  57. McArthur SJ, et al. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005;84:1628–36.

    Article  PubMed  Google Scholar 

  58. Kokkali G, et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of beta-thalassaemia: a pilot study. Hum Reprod. 2007;22:1443–9.

    Article  CAS  PubMed  Google Scholar 

  59. Verlinsky Y, Kuliev A. Micromanipulation of gametes and embryos in preimplantation genetic diagnosis and assisted fertilization. Curr Opin Obstet Gynecol. 1992;4:720–5.

    Article  CAS  PubMed  Google Scholar 

  60. Verlinsky Y. Single gene mutations in early embryonic loss. J Assist Reprod Genet. 1992;9:504–5.

    Article  CAS  PubMed  Google Scholar 

  61. Scott KL, et al. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100:608–14.

    Article  PubMed  Google Scholar 

  62. Hassold T, et al. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16(2):R203–8.

    Article  CAS  PubMed  Google Scholar 

  63. Forman EJ, et al. Embryos whose polar bodies contain isolated reciprocal chromosome aneuploidy are almost always euploid. Hum Reprod. 2013;28:502–8.

    Article  CAS  PubMed  Google Scholar 

  64. Scott RT, et al. Delivery of a chromosomally normal child from an oocyte with reciprocal aneuploid polar bodies. J Assist Reprod Genet. 2012;29(6):533–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fragouli E, et al. The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Mol Hum Reprod. 2011;17:286–95.

    Article  PubMed  Google Scholar 

  66. Gabriel AS, et al. Array comparative genomic hybridisation on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. J Med Genet. 2011;48(7):433–7.

    Article  CAS  PubMed  Google Scholar 

  67. Treff NR, et al. Characterization of the source of human embryonic aneuploidy using microarray-based 24 chromosome preimplantation genetic diagnosis (mPGD) and aneuploid chromosome fingerprinting. Fertil Steril. 2008;90:S37.

    Article  Google Scholar 

  68. Tarín JJ, et al. Human embryo biopsy on the 2nd day after insemination for preimplantation diagnosis: removal of a quarter of embryo retards cleavage. Fertil Steril. 1992;58:970–6.

    Article  PubMed  Google Scholar 

  69. Mottla GL, et al. Lineage tracing demonstrates that blastomeres of early cleavage-stage human pre-embryos contribute to both trophectoderm and inner cell mass. Hum Reprod. 1995;10:384–91.

    Article  CAS  PubMed  Google Scholar 

  70. Hardy K, Handyside AH. Cell allocation in twin half mouse embryos bisected at the 8-cell stage: implications for preimplantation diagnosis. Mol Reprod Dev. 1993;36:16–22.

    Article  CAS  PubMed  Google Scholar 

  71. Goossens V, et al. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod. 2008;23:481–92.

    Article  PubMed  Google Scholar 

  72. De Boer KA, et al. Moving to blastocyst biopsy for preimplantation genetic diagnosis and single embryo transfer at Sydney IVF. Fertil Steril. 2004;82:295–8.

    Article  PubMed  Google Scholar 

  73. Scott RT, et al. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30.

    Article  PubMed  Google Scholar 

  74. Hardy K, et al. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development. 1989;107:597–604.

    CAS  PubMed  Google Scholar 

  75. Hansis C, Edwards RG. Cell differentiation in the preimplantation human embryo. Reprod Biomed Online. 2003;6:215–20.

    Article  PubMed  Google Scholar 

  76. Braude P, et al. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    Article  CAS  PubMed  Google Scholar 

  77. Johnson DS, et al. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16:944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Treff NR, et al. SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod. 2010;16:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Werner MD, et al. The clinically recognizable error rate following the transfer of comprehensive chromosomal screened euploid embryos is low. Fertil Steril. 2014;102(6):1613–8.

    Article  PubMed  Google Scholar 

  80. Rius M, et al. Comprehensive embryo analysis of advanced maternal age–related aneuploidies and mosaicism by short comparative genomic hybridization. Fertil Steril. 2011;95:413–6.

    Article  PubMed  Google Scholar 

  81. Rius M, et al. Reliability of short comparative genomic hybridization in fibroblasts and blastomeres for a comprehensive aneuploidy screening: first clinical application. Hum Reprod. 2010;25:1824–35.

    Article  CAS  PubMed  Google Scholar 

  82. Landwehr C, et al. Rapid comparative genomic hybridization protocol for prenatal diagnosis and its application to aneuploidy screening of human polar bodies. Fertil Steril. 2008;90:488–96.

    Article  PubMed  Google Scholar 

  83. Geraedts J, et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum Reprod. 2011;26(11):3173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Treff NR, et al. Four hour 24 chromosome aneuploidy screening using high throughput PCR SNP allele ratio analyses. Fertil Steril. 2009;92:S49–50.

    Google Scholar 

  85. Fishel S, et al. Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy-the future of IVF? Fertil Steril. 2010;93:1006e7–1006e10.

    Article  Google Scholar 

  86. Kallioniemi A, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  CAS  PubMed  Google Scholar 

  87. Arteaga-Salas JM, et al. An overview of image-processing methods for Affymetrix GeneChips. Brief Bioinform. 2008;9:25–33.

    Article  CAS  PubMed  Google Scholar 

  88. Treff NR, et al. A novel single-cell DNA fingerprinting method successfully distinguishes sibling human embryos. Fertil Steril. 2009;94:477–84.

    Article  PubMed  Google Scholar 

  89. Franasiak JM, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15, 169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101:656–663.e1.

    Article  PubMed  Google Scholar 

  90. Scott RT, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100:697–703.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Scott Jr MD, HCLD/ALD (ABB) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Franasiak, J.M., Scott, R.T. (2017). Preimplantation Genetic Diagnosis and Genetic Screening. In: Falcone, T., Hurd, W. (eds) Clinical Reproductive Medicine and Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-52210-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52210-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52209-8

  • Online ISBN: 978-3-319-52210-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics