Skip to main content

Assisted Reproductive Technology: Clinical Aspects

  • Chapter
  • First Online:
Clinical Reproductive Medicine and Surgery

Abstract

Assisted reproductive technologies (ARTs) are all fertility treatments that include the handling of oocytes and sperm and/or embryos. Historically, ART has included procedures such as gamete intrafallopian transfer (GIFT) and zygote intrafallopian transfer (ZIFT), although these procedures are rarely performed today. In vitro fertilization (IVF), which involves harvesting oocytes and combining them with sperm in a laboratory setting, growing the embryos and transferring them directly into the uterus under ultrasound guidance, is the mainstay of current ART treatments. Far-reaching advances in clinical and laboratory techniques have been made since 1978, when the first IVF baby was born in England. Today, ART procedures are responsible for over 1% of all children born in the USA each year. The process of IVF is a highly coordinated, time-intensive process that involves weeks of preparation. The existing IVF protocols take advantage of preventing ovulation in the face of controlled ovarian hyperstimulation. Special considerations include how to fertilize the oocytes (intracytoplasmic sperm injection or conventional insemination) and whether to perform preimplantation genetic testing on the embryos. Many controversies exist, as technological advances push the boundaries of current practice. IVF, which was originally designed to treat infertility, now offers the possibility to screen embryos for specific genetic mutations, hence allowing a family to have a child without a heritable genetic condition. In addition, screening for aneuploidy is becoming increasingly more common. In this way, IVF is raising new questions about human genetics, and it will continue to challenge our ethical frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Assisted reproductive technology (ART):

The Centers for Disease Control and Prevention (CDC) defines ART as the following: “all fertility treatments in which both [oocytes] and sperm are handled. In general, ART procedures involve surgically removing [oocytes] from a woman’s ovaries, combining them with sperm in the laboratory, and returning them to the woman’s body or donating them to another woman. They do not include treatments in which only sperm are handled (i.e. intrauterine—or artificial—insemination) or procedures in which a woman takes medicine only to stimulate [oocyte] production without the intention of having [oocytes] retrieved.”

In vitro fertilization (IVF):

A method of assisted reproductive technology that involves combining an oocyte with sperm in the laboratory

Preimplantation genetic screening (PGS):

The process of removing one or more cells from an embryo to test for a normal number of chromosomes

Preimplantation genetic diagnosis (PGD):

The process of removing one or more cells from an embryo to test for an allele that is associated with a particular disease

Gonadotropins:

Endogenously, these are the hormones that come from the pituitary in response to gonadotropin releasing hormone and act on the ovaries to cause follicular growth and maturation; exogenously, these are fertility medications given by injection that contain follicle stimulating hormone (FSH) alone or combined with luteinizing hormone (LH)

Saline infusion sonogram (SIS): A procedure using ultrasound and sterile saline to evaluate the uterus and the shape of the uterine cavity

Controlled ovarian hyperstimulation (COH):

The administration of hormone medications that stimulate the ovaries to produce multiple oocytes. It is sometimes called enhanced follicular recruitment or superovulation

Intracytoplasmic sperm injection (ICSI):

A micromanipulation procedure in which a single sperm is injected directly into an oocyte to attempt fertilization

Third party reproduction:

The use of oocytes, sperm, or embryos that have been donated by a third person (donor) to enable an infertile individual or couple (intended recipient) to become a parent (or parents). This also refers to the use of a gestational carrier

References

  1. Miller DC, Hollenbeck BK, Smith GD, Randolph JF, Christman GM, Smith YR, Lebovic DI, Ohl DA. Processed total motile sperm count correlates with pregnancy outcome after intrauterine insemination. Urology. 2002;60(3):497–501.

    Article  PubMed  Google Scholar 

  2. Cooper T, Noonan E, von Eckardstein S, Auger J, Gordon Baker H, Behre H, Haugen T, Kruger T, Wang C, Mbizvo M, Vogelsong K. World Health Organization values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.

    Article  PubMed  Google Scholar 

  3. Society for Assisted Reproductive Technology. Assisted Reproductive Technologies [cited 2016 July 1]. Available from: http://www.sart.org/SART_Assisted_Reproductive_Technologies/.

  4. Sonmezer M, Turkcuoglu I, Coskun U, Oktay K. Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil Steril. 2011;95(6):2125.e9–11.

    Article  Google Scholar 

  5. Cakmak H, Katz A, Cedars M, Rosen M. Effective method for emergency fertility preservation: random-start controlled ovarian hyperstimulation. Fertil Steril. 2013;100(6):1673–80.

    Article  PubMed  Google Scholar 

  6. United States Department of Health and Human Services; National Center for Health Statistics. National Survey of Family Growth, Cycle VI, 2002. National Center for Health Statistics 2008.

    Google Scholar 

  7. Society for Assisted Reproductive Technology. SART National Summary Report 2014 [cited 2016 July 5]. Available from: https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=0.

  8. Edwards R, Bavister B, Steptoe P. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;221(5181):632–5.

    Article  CAS  PubMed  Google Scholar 

  9. Johnson M. Robert Edwards: the path to IVF. Reprod BioMed Online. 2011;23(2):245–62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jones Jr H, Jones G, Andrews M, Acosta A, Bundren C, Garcia J, et al. The program for in vitro fertilization at Norfolk. Fertil Steril. 1982;38(1):14–21.

    Article  PubMed  Google Scholar 

  11. Beall S, Decherney A. The history and challenges surrounding ovarian stimulation in the treatment of infertility. Fertil Steril. 2012;97(4):785–801.

    Article  Google Scholar 

  12. Society for Assisted Reproductive Technology. Patient Evaluation [cited 2016 July 5]. Available from: SART: http://www.sart.org/sart_patient_evaluation/).

  13. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile female: a committee opinion. Fertil Steril. 2015;103(6):e44–50.. PMID: 25936238

    Article  Google Scholar 

  14. Zeyneloglu H, Arici A, Olive D. Adverse effects of hydrosalpinx on pregnancy rates after in vitro fertilization-embryo transfer. Fertil Steril. 1998;70:492–9.

    Article  CAS  PubMed  Google Scholar 

  15. Camus E, Poncelet C, Aucouturier J, et al. Hydrosalpinx and fertilization in vitro-embryo transfer: abstention or salpingectomy? Abstention, salpingectomy or salpingostomy? Gynecol Obstet Fertil. 2001;29:466–73.

    Article  CAS  PubMed  Google Scholar 

  16. ACOG. Practice bulletin number 148: thyroid disease in pregnancy. Obstet Gynecol. 2015;125(4):996–1005.

    Article  Google Scholar 

  17. Haddow J, Palomaki G, Allan W, Williams JR, Knight G, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341:549–55.

    Article  CAS  PubMed  Google Scholar 

  18. Practice Committee of the American Society for Reproductive Medicine. Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril. 2015;104:545–53.

    Article  Google Scholar 

  19. Davis S. Environmental modulation of the immune system via the endocrine system. Domest Anim Endocrinol. 1998;15:283–9.

    Article  CAS  PubMed  Google Scholar 

  20. Stagnaro-Green A, Chen X, Bogden J, Davies T, Scholl T. The thyroid and pregnancy: a novel risk factor for very preterm delivery. Thyroid. 2005;15:351–7.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor PN, Minassian C, Rehman A, Iqbal A, Draman MS, Hamilton W, Dunlop D, Robinson A, Vaidya B, Lazarus JH, Thomas S, Dayan CM, Okosieme OE. TSH levels and risk of miscarriage in women on long-term levothyroxine: a community-based study. J Clin Endocrinol Metab. 2014;99(10):3895–902.. PMID: 25057882

    Article  CAS  PubMed  Google Scholar 

  22. Kim C, Ahn J, Kang S, Kim S, Chae H, Kang B. Effect of levothyroixine treatment on in vitro fertilization and pregnancy outcome in infertile women with subclinical hypothyroidism undergoing in vitro fertilization/intracyoplasmic sperm injection. Fertil Steril. 2011;95(5):1650–4.

    Article  CAS  PubMed  Google Scholar 

  23. Mintziori G, Goulis D, Kolibianakis E. Thyroid function and IVF outcome: when to investigate and when to intervene? Curr Opin Obstet Gynecol. 2016;28(3):191–7.

    Article  PubMed  Google Scholar 

  24. De Groot L, Abalovich M, Alexander E, Amino N, Barbour L, Cobin R, Eastman C, Lazarus J, Luton D, Mandel S, Mestman J, Rovet J, Sullivan S. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:2543–65.

    Article  CAS  PubMed  Google Scholar 

  25. Werner MD, Forman EJ, Hong KH, Franasiak JM, Molinaro TA, Scott RT. Defining the “sweet spot” for administered luteinizing hormone-to-follicle-stimulating hormone gonadotropin ratios during ovarian stimulation to protect against a clinically significant late follicular increase in progesterone: an analysis of 10,280 first in vitro fertilization cycles. Fertil Steril. 2014;102(5):1312–7.. PMID: 25150393

    Article  CAS  PubMed  Google Scholar 

  26. Schmitz C, Bocca S, Beydoun H, Stadtmauer L, Oehninger S. Does the degree of hypothalamic-pituitary-ovarian recovery after oral contraceptive pills affect outcomes of IVF/ICSI cycles receiving GnRH-antagonist adjuvant therapy in women over 35 years of age? J Assist Reprod Genet. 2012;29(9):877–82.. PMID: 22729431. PMCID: PMC3463673

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tarlatzis BC, Zepiridis L, Grimbizis G, Bontis J. Clinical management of low ovarian response to stimulation for IVF: a systematic review. Hum Reprod Update. 2003;9(1):61–76.. PMID: 12638782

    Article  CAS  PubMed  Google Scholar 

  28. Porter R, Smith W, Craft I, Abdulwahid N, Jacobs H. Induction of ovulation for in-vitro fertilisation using buserelin and gonadotropins. Lancet. 1984;2(8414):1284–5.

    Article  CAS  PubMed  Google Scholar 

  29. DiLuigi A, Engmann L, Schmidt D, Benadiva C, Nulsen J. A randomized trial of microdose leuprolide acetate protocol versus luteal phase ganirelix protocol in predicted poor responders. Fertil Steril. 2011;95(8):2531–3.

    Article  CAS  PubMed  Google Scholar 

  30. Levens E, Whitcomb B, Kort J, Materia-Hoover D, Larsen F. Microdose follicular flare: a viable alternative for normal-responding patients undergoing in vitro fertilization? Fertil Steril. 2009;91(1):110–4.

    Article  CAS  PubMed  Google Scholar 

  31. Barmat L, Chantilis S, Hurst B, Dickey R. A randomized prospective trial comparing gonadotropin-releasing hormone (GnRH) antagonist/recombinant follicle-stimulating hormone (rFSH) versus GnRH-agonist/rFSH in women pretreated with oral contraceptives before in vitro fertilization. Fertil Steril. 2005;83(2):321–30.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Inany H, Aboulghar M, Mansour R, Proctor M. Recombinant versus urinary human chorionic gonadotropin for ovulation induction in assisted conception. Hum Reprod. 2005;20(8):2061–73.

    Article  CAS  PubMed  Google Scholar 

  33. Casper RF. Basic understanding of gonadotropin-releasing hormone–agonist triggering. Fertil Steril. 2015;103(4):867–9.

    Article  CAS  PubMed  Google Scholar 

  34. European Recombinant LH Study Group. Human recombinant luteinizing hormone is as effective as, but safer than, urinary human chorionic gonadotropin in inducing final follicular maturation and ovulation in in vitro fertilization procedures: results of a multicenter double-blind study. J Clin Endocrinol Metab. 2001;86(6):2607–18.. PMID: 11397861

    Article  Google Scholar 

  35. Macklon N, Fauser B. Impact of ovarian hyperstimulation on the luteal phase. J Reprod Fertil Suppl. 2000;55:101–8.

    CAS  PubMed  Google Scholar 

  36. van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2015;(7):CD009154.

    Google Scholar 

  37. Yanushpolsky EH, editor. Luteal phase support in in vitro fertilization. Seminars in reproductive medicine; 2015: Thieme Medical Publishers.

    Google Scholar 

  38. Croxatto H, Fuentealba B, Diaz S, Pastene L, Tatum H. A simple nonsurgical technique to obtain unimplanted eggs from human uteri. Am J Obstet Gynecol. 1972;112(5):662–8.

    Article  CAS  PubMed  Google Scholar 

  39. Practice Committee of the American Society for Reproductive Medicine. Criteria for number of embryos to transfer: a committee opinion. Fertil Steril. 2013;99(1):44–6.

    Article  Google Scholar 

  40. Practice Committee of the American Society for Reproductive Medicine. Elective single-embryo transfer. Fertil Steril. 2012;97(4):835–42.

    Article  Google Scholar 

  41. Thurin A, Hausken J, Hillensjo T, Jablonowska B, Pinborg A, Strandell A, et al. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004;351(23):2392–402.

    Article  CAS  PubMed  Google Scholar 

  42. Pandian Z, Bhattacharya S, Ozturk O, Serour G, Templeton A. Number of embryos for transfer following in-citro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2009;2:CD003416.

    Google Scholar 

  43. Gelbaya T, Tsoumpou I, Nardo L. The likelihood of live birth and multiple birth after single versus double embryo transfer at the cleavage stage: a systematic review and meta-analysis. Fertil Steril. 2010;94(3):936–45.

    Article  PubMed  Google Scholar 

  44. McLernon D, Harrild K, Bergh C, Davies M, de Neubourg D, Dumoulin J, et al. Clinical effectivelness of elective single embryo transfer versus double embryo transfer: meta-analysis of individual patient data from randomised trials. BMJ. 2010;341:c6945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Derks RS, Farquhar C, Mol BWJ, Buckingham K, Heineman MJ. Techniques for preparation prior to embryo transfer. The Cochrane Library. 2009.

    Google Scholar 

  46. Schoolcraft WB. Importance of embryo transfer technique in maximizing assisted reproductive outcomes. Fertil Steril. 2016;105(4):855–60.

    Article  PubMed  Google Scholar 

  47. Neithardt AB, Segars JH, Hennessy S, James AN, McKeeby JL. Embryo afterloading: a refinement in embryo transfer technique that may increase clinical pregnancy. Fertil Steril. 2005;83(3):710–4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mahajan N, Sharma S. The endometrium in assisted reproductive technology: How thin is thin? J Hum Reprod Sci. 2016;9(1):3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roque M, Valle M, Guimaraes B, Sampaio M, Geber S. Freeze-all policy: fresh vs. Frozen-thawed embryo transfer. Fertil Steril. 2015;103(5):1190–3.

    Article  PubMed  Google Scholar 

  50. Ozgur K, Berkkanoglu M, Bulut H, Humaidan P, Coetzee K. Perinatal outcomes after fresh versus vitrified-warmed blastocyst transfer: retrospective analysis. Fertil Steril. 2015;104(4):899–907.e3.. PMID: 26211882

    Article  PubMed  Google Scholar 

  51. Rezazadeh Valojerdi M, Eftekhari-Yazdi P, Karimian L, Hassani F, Movaghar B. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. J Assist Reprod Genet. 2009;26(6):347–54.. PMID: 19513822. PMCID: PMC2729856

    Article  PubMed  PubMed Central  Google Scholar 

  52. Davies M, Moore V, Willson K, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.

    Article  CAS  PubMed  Google Scholar 

  53. Reddy UM, Wapner RJ, Rebar RW, Tasca RJ. Infertility, assisted reproductive technology, and adverse pregnancy outcomes: executive summary of a National Institute of Child Health and Human Development Workshop. Obstet Gynecol. 2007;109(4):967–77.

    Article  PubMed  Google Scholar 

  54. Colpin H, Soenen S. Parenting and psychosocial development of IVF children: a follow-up study. Hum Reprod. 2002;17(4):1116–23.

    Article  CAS  PubMed  Google Scholar 

  55. University of Iowa Hospitals and Clinics. Information Summary for Intracytoplasmic Sperm Injection (ICSI) [cited 2016 July 5]. Available from: https://www.uihealthcare.org/content.aspx?id=21843.

  56. Cooper AR, Jungheim ES. Preimplantation genetic testing: indications and controversies. Clin Lab Med. 2010;30(3):519–31. PMID: 20638568. PMCID: PMC3996805

    Article  PubMed  PubMed Central  Google Scholar 

  57. Baart E, Martini E, van den Berg I, Macklon N, Galjaard R, Fauser B, Van Opstal D. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod. 2006;21(1):223–33.

    Article  CAS  PubMed  Google Scholar 

  58. Simpson J, Kuliev A, Rechitsky S. Improving assisted reproductive technology pregnancy rates: excluding aneuploid and interrogating euploid embryos. Fertil Steril. 2015;104(3):557–8.

    Article  PubMed  Google Scholar 

  59. Lee H, McCulloh D, Hodes-Wertz B, Adler A, McCaffrey C, Grifo J. In vitro fertilization with preimplantation genetic screening improves implantation and live birth in women age 40–43. J Assist Reprod Genet. 2015;32(3):435–44.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Simpson J. Children born after preimplantation genetic diagnosis show no increase in congenital anomalies. Hum Reprod. 2010;25(1):6–8.

    Article  PubMed  Google Scholar 

  61. American Society for Reproductive Medicine. Third-party Reproduction: Sperm, egg, and embryo donation and surrogacy, A Guide for Patients 2012 Accessed July 5 2016. Available from: https://www.asrm.org/uploadedFiles/ASRM_Content/Resources/Patient_Resources/Fact_Sheets_and_Info_Booklets/thirdparty.pdf.

  62. Opsahl M, Blauer K, Black S, Dorfmann A, Sherins R, Schulman J. Pregnancy rates in sequential in vitro fertilization cycles by oocyte donors. Obstet Gynecol. 2001;97(2):201–4.

    CAS  PubMed  Google Scholar 

  63. Practice Committee of American Society for Reproductive Medicine. Mature oocyte cryopreservation: a guideline. Fertil Steril. 2013;99(1):37–43.

    Article  Google Scholar 

  64. Jensen JR, Morbeck DE, Coddington CC. Fertility preservation. Mayo Clin Proc. 2011;86(1):45–9.. PMID: 21193655. PMCID: PMC3012633

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mesen TB, Mersereau JE, Kane JB, Steiner AZ. Optimal timing for elective egg freezing. Fertil Steril. 2015;103(6):1551–6.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kumar P, Sait SF, Sharma A, Kumar M. Ovarian hyperstimulation syndrome. J Hum Reprod Sci. 2011;4(2):70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Practice Committee of American Society for Reproductive Medicine. Ovarian hyperstimulation syndrome. Fertil Steril. 2008;90(5 Suppl):S188–93.. PMID: 19007627

    Google Scholar 

  68. Britt K, Short R. The plight of nuns: hazards of nulliparity. Lancet. 2012;379(9834):2322–3.. PMID: 22153781

    Article  PubMed  Google Scholar 

  69. Zhu JL, Basso O, Obel C, Bille C, Olsen J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ. 2006;333(7570):679.. PMID: 16893903. PMCID: PMC1584372

    Article  PubMed  PubMed Central  Google Scholar 

  70. Aston KI, Peterson CM, Carrell DT. Monozygotic twinning associated with assisted reproductive technologies: a review. Reproduction. 2008;136(4):377–86.. PMID: 18577552

    Article  CAS  PubMed  Google Scholar 

  71. Odom L, Segars J. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes. 2010;17(6):517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ponjaert-Kristoffersen I, Bondouelle M, Barnes J, Nekkebroeck J, Loft A, Wennerholm U, et al. International collaborative study of intracytoplasmic sperm injection-conceived, in vitro fertilization-conceived, and naturally conceived 5-year-old child outcomes: cognitive and motor assessments. Pediatrics. 2005;115(3):283–9.

    Article  Google Scholar 

  73. Ethics Committee of the American Society for Reproductive Medicine. Disposition of abandoned embryos: a committee opinion. Fertil Steril. 2013;99(7):1848–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Michael P. Steinkampf, Beth A. Malizia, Damon Davis, Cristine Silva, and Melissa Hiner, who were contributors to the first edition of this chapter, as well as Beth Plante, Gary D. Smith, and Sandra Ann Carson, who were contributors to the second edition of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica B. Mahany MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahany, E.B., Smith, Y.R. (2017). Assisted Reproductive Technology: Clinical Aspects. In: Falcone, T., Hurd, W. (eds) Clinical Reproductive Medicine and Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-52210-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52210-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52209-8

  • Online ISBN: 978-3-319-52210-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics