Skip to main content

Hydrometallurgical Processing of Copper Smelter Dust for Copper Recovery as Nano-particles: A Review

  • Conference paper
  • First Online:
Energy Technology 2017

Abstract

In view of the steady depletion of primary sources of copper and the increased global demand for refined copper, it becomes necessary to explore some secondary sources for possible extraction of copper. The waste copper smelter dust (CSD) is a rich secondary resource for copper as shown by the chemical composition of the South African Palabora coppers smelter plant CSD that assayed 18.02, 13.36, and 3.4 wt% copper, iron and sulphur; respectively. Studies on CSD have focused majorly on either dust characterization or treatment, while hydrometallurgical extraction without pretreatment and with pretreatment using techniques such as oxidative roasting are also considered quite attractive. The challenge of iron dissolution during the leaching stage in these processes necessitates adequate purification of the leach liquor before the extraction of the metal as nano-particles. Hence, this review examined the theories relating to the characterization and treatment of CSD for copper recovery as nanoparticles; with factors having a bearing on the treatment process such as kinetics considered with the aim of providing scientific basis for the research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A.A. Baba, K.I. Ayinla, F.A. Adekola, M.K. Ghosh, O.S. Ayanda, R.B. Bale, A.R. Sheik, S.R. Pradhan, A review on novel techniques for chalcopyrite ore processing. Int. J. Min. Eng. Mineral Process. 1(1), 1–16 (2012)

    Article  Google Scholar 

  2. USGS, Facts about Copper: copper uses, resources, supply, demand and production information 2009, http://eology.comusgsuses-of-copper/. Accessed 15/12/2010

  3. R.T. Jones, P.J. Mackey, An overview of copper smelting in Southern Africa (2015)

    Google Scholar 

  4. J. Wood, S. Creedy, R. Matusewicz, M. Reuter, Secondary copper processing using Outotec Ausmelt TSL technology, in Proceedings of MetPlant (2011), pp. 460–467

    Google Scholar 

  5. M. Reuter, A. van Schaik, Thermodynamic metrics for measuring the “sustainability” of design for recycling. JOM 60(8), 39–46 (2008)

    Article  Google Scholar 

  6. European Commission, European Dioxin Inventory—Secondary Copper Production [online] (2009). Available from http://ec.europa.eu/environment/dioxin/pdf/stage1/seccopper.pdf. Accessed 23 Feb 2011. A. Umer et al., Selection of a suitable method for the synthesis of copper nanoparticles. Nano 7(05), 1230005 (2012)

  7. J.B. Wang, C.H. Hung, C.H. Hung, G.P. Chang-Chien, Polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from an industrial park clustered with metallurgical industries. J. Hazard. Mater. 161(2), 800–807 (2009)

    Article  CAS  Google Scholar 

  8. V. Montenegro, H. Sano, T. Fujisawa, Recirculation of Chilean copper smelting dust with high arsenic content to the smelting process. Mater. Trans. 49(9), 2112–2118 (2008)

    Article  CAS  Google Scholar 

  9. Regulation EC, No 1907/2006 of the European Parliament and of the Council of 18 December 2006, concerning the Registration. Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive, vol. 45 (1999), pp. 1–849

    Google Scholar 

  10. SANS, South African National Standard: Ambient Air Quality—Limits for Common Pollutants (2005)

    Google Scholar 

  11. U. Neveling, Palabora Mining Company Annual report on ambient air quality monitoring (2011)

    Google Scholar 

  12. L. Qiang, I.S. Pinto, Z. Youcai, Sequential stepwise recovery of selected metals from flue dusts of secondary copper smelting. J. Clean. Prod. 84, 663–670 (2014)

    Article  CAS  Google Scholar 

  13. I.S. Pinto, H.M. Soares, Selective leaching of molybdenum from spent hydrodesulphurisation catalysts using ultrasound and microwave methods. Hydrometallurgy 129, 19–25 (2012)

    Article  Google Scholar 

  14. I.S. Pinto, H.M. Soares, Recovery of molybdates from an alkaline leachate of spent hydrodesulphurisation catalyst–proposal of a nearly-closed process. J. Clean. Prod. 52, 481–487 (2013)

    Article  CAS  Google Scholar 

  15. F. Bakhtiari, H. Atashi, M. Zivdar, S.S. Bagheri, Continuous copper recovery from a smelter’s dust in stirred tank reactors. Int. J. Miner. Process. 86(1), 50–57 (2008)

    Article  CAS  Google Scholar 

  16. F. Bakhtiari, M. Zivdar, H. Atashi, S.S. Bagheri, Bioleaching of copper from smelter dust in a series of airlift bioreactors. Hydrometallurgy 90(1), 40–45 (2008)

    Article  CAS  Google Scholar 

  17. F.J. Alguacil, I. Garcia-Diaz, F. Lopez, O. Rodriguez, Recycling of copper flue dust via leaching-solvent extraction processing. Desalin. Water Treat. 56(5), 1202–1207 (2015)

    Article  CAS  Google Scholar 

  18. G.A. Kordosky, Copper recovery using leach/solvent extraction/electrowinning technology: forty years of innovation, 2.2 million tonnes of copper annually. J. S. Afr. Inst. Min. Metall. 102(8), 445–450 (2002)

    Google Scholar 

  19. N.N. Hoover, B.J. Auten, B.D. Chandler, Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles. J. Phys. Chem. B 110(17), 8606–8612 (2006)

    Article  CAS  Google Scholar 

  20. Y. Niu, R.M. Crooks, Preparation of dendrimer-encapsulated metal nanoparticles using organic solvents. Chem. Mater. 15(18), 3463–3467 (2003)

    Article  CAS  Google Scholar 

  21. E. Darezereshki, F. Bakhtiari, Synthesis and characterization of tenorite (CuO) nanoparticles from smelting furnace dust (SFD). J. Min. Metall. B: Metall. 49(1), 21–26 (2013)

    Article  CAS  Google Scholar 

  22. C. Samuelsson, G. Carlsson, Characterization of copper smelter dusts. CIM Bull. 94(1051), 111–115 (2001)

    CAS  Google Scholar 

  23. Y. Chen, T. Liao, G. Li, B. Chen, X. Shi, Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction. Miner. Eng. 39, 23–28 (2012)

    Article  CAS  Google Scholar 

  24. D.K. Steele, K.S. Gritton, S.B. Odedirk, Treatment of Copper Smelting and Refining Wastes (US Department of the Interior, Bureau of Mines, 1994)

    Google Scholar 

  25. A.K. Biswas, W.G. Davenport, Extractive Metallurgy of Copper: International Series on Materials Science and Technology, vol. 20. Elsevier (2013)

    Google Scholar 

  26. D.R. Swinbourne, E. Simak, A. Yazawa, V. Melbourne, Accretion and dust formation in copper smelting-thermodynamic considerations, in Sulfide Smelting (2002), pp. 247–259

    Google Scholar 

  27. E. Miettinen, Thermal conductivity and characteristics of copper flash smelting flue dust accretions. Teknillinen korkeakoulu (2008)

    Google Scholar 

  28. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  CAS  Google Scholar 

  29. R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, C.C. Koch, Mechanical behavior of nanocrystalline copper. Mater. Sci. Eng., A 463(1), 14–21 (2007)

    Article  Google Scholar 

  30. Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal. Nature 419(6910), 912–915 (2002)

    Article  CAS  Google Scholar 

  31. X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363(1), 143–150 (2007)

    Article  CAS  Google Scholar 

  32. K.B. Male, S. Hrapovic, Y. Liu, D. Wang, J.H. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta 516(1), 35–41 (2004)

    Article  CAS  Google Scholar 

  33. Y. Guo, W. Meyer-Zaika, M. Muhler, S. Vukojević, M. Epple, Cu/Zn/Al xerogels and aerogels prepared by a sol–gel reaction as catalysts for methanol synthesis. Eur. J. Inorg. Chem. 2006(23), 4774–4781 (2006)

    Article  Google Scholar 

  34. M.L. Kantam, V.S. Jaya, M.J. Lakshmi, B.R. Reddy, B.M. Choudary, S.K. Bhargava, Alumina supported copper nanoparticles for aziridination and cyclopropanation reactions. Catal. Commun. 8(12), 1963–1968 (2007)

    Article  CAS  Google Scholar 

  35. J.A. Rodriguez, P. Liu, J. Hrbek, J. Evans, M. Perez, Water gas shift reaction on Cu and Au nanoparticles supported on CeO2 (111) and ZnO (000$ bar 1$): intrinsic activity and importance of support interactions. Angew. Chem. 119(8), 1351–1354 (2007)

    Article  Google Scholar 

  36. C. Pecharromán, A. Esteban-Cubillo, I. Montero, J.S. Moya, E. Aguilar, J. Santarén, A. Alvarez, Monodisperse and corrosion-resistant metallic nanoparticles embedded into sepiolite particles for optical and magnetic applications. J. Am. Ceram. Soc. 89(10), 3043–3049 (2006)

    Article  Google Scholar 

  37. E. Balladares, U. Kelm, S. Helle, R. Parra, E. Araneda, Chemical-mineralogical characterization of copper smelting flue dust. Dyna 81(186), 11–18 (2014)

    Article  Google Scholar 

  38. M. Vítková, V. Ettler, J. Hyks, T. Astrup, B. Kříbek, Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt). Appl. Geochem. 26, S263–S266 (2011)

    Article  Google Scholar 

  39. A. Morales, M. Cruells, A. Roca, R. Bergó, Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization. Hydrometallurgy 105(1), 148–154 (2010)

    Article  CAS  Google Scholar 

  40. A.B. Vakylabad, A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust. Int. J. Miner. Process. 101(1), 94–99 (2011)

    Article  CAS  Google Scholar 

  41. A.B. Vakylabad, M. Schaffie, M. Ranjbar, Z. Manafi, E. Darezereshki, Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors. J. Hazard. Mater. 241, 197–206 (2012)

    Article  Google Scholar 

  42. J.Y. Wu, F.C. Chang, H.P. Wang, M.J. Tsai, C.H. Ko, C.C. Chen, Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust. Environ. Technol. 36(23), 2952–2958 (2015)

    Article  CAS  Google Scholar 

  43. T.K. Ha, B.H. Kwon, K.S. Park, D. Mohapatra, Selective leaching and recovery of bismuth as Bi2O3 from copper smelter converter dust. Sep. Purif. Technol. 142, 116–122 (2015)

    Article  CAS  Google Scholar 

  44. L.G. Austin, I. Shah, A method for inter-conversion of Microtrac and sieve size distributions. Powder Technol. 35(2), 271–278 (1983)

    Article  Google Scholar 

  45. B.A. Wills, T. Napier-Munn, Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann (2015)

    Google Scholar 

  46. Z.F. Xu, L.I. Qiang, H.P. Nie, Pressure leaching technique of smelter dust with high-copper and high-arsenic. Trans. Nonferrous Met. Soc. China 20, s176–s181 (2010)

    Article  CAS  Google Scholar 

  47. V. Ettler, M. Vítková, M. Mihaljevič, O. Šebek, M. Klementová, F. Veselovský, P. Vybíral, B. Kříbek, Dust from Zambian smelters: mineralogy and contaminant bioaccessibility. Environ. Geochem. Health 36(5), 919–933 (2014)

    Article  CAS  Google Scholar 

  48. T. Rosenqvist, Principles of Extractive Metallurgy. Tapir Academic Press (2004)

    Google Scholar 

  49. The encyclopedia of earth, 2015: https://en.wikipedia.org/wiki/Encyclopedia_of_Earth

  50. S.K. Kawatra, T.C. Eisele, Depression of Pyrite Flotation by Yeast and Bacteria. Mineral Biotechnology: Microbial Aspects of Mineral Beneficiation, Metal Extraction, and Environmental Control (2001), p. 3

    Google Scholar 

  51. S. Prasad, B.D. Pandey, Alternative processes for treatment of chalcopyrite—a review. Miner. Eng. 11(8), 763–781 (1998)

    Article  CAS  Google Scholar 

  52. F. Magagula, High temperature roasting of sulphide concentrate and its effect on the type of precipitate formed. Doctoral dissertation, 2012

    Google Scholar 

  53. Z.B. Yin, E. Caba, L. Barron, D. Belin, W. Morris, M. Vosika, R. Bartlett, Copper extraction from smelter flue dust by lime-roast/ammoniacal heap leaching. Residues and Effluents: Processing and Environmental Considerations (1992), pp. 255–267

    Google Scholar 

  54. B. Gorai, R.K. Jana, Z.H. Khan, Electrorefining electrolyte from copper plant dust. Mater. Trans. 43(3), 532–536 (2002)

    Article  CAS  Google Scholar 

  55. M.P. Smirnov, V.T. Khvan, G.A. Bibenina, R.P. Kefilyan, N.I. Il’yasov, Complex treatment of lead and rhenium containing sulfate dusts from copper plants. Tsvetn. Met. 6, 3–6 (1984)

    CAS  Google Scholar 

  56. Z.W. Zhang, W. Lu, F. Zheng, Separation and recovery of copper and zinc from flue dust. Huanjing Kexue 11(6), 1012–1016 (1992)

    CAS  Google Scholar 

  57. M. Carter, E.R. Vance, L.P. Aldridge, M. Zaw, G. Khoe, Immobilization of arsenic trioxide in cementitious materials, in Australasian Institute of Mining and Metallurgy (1994), pp. 275–280

    Google Scholar 

  58. Y. Fu, L. Jiang, D. Wang, Removal of arsenic from copper smelter flue dust by calcinations. Yelian Bufen 6, 14–16 (2000)

    Google Scholar 

  59. Z. Yu, Process for bismuth recovery from the flue dust of copper smelting. Huaxue Shijie 28(10), 465–468 (1987)

    CAS  Google Scholar 

  60. H. Mochida, O. Iida, Copper smelter flue dust treatment (Kokai Tokkyo Koho, Jap, 1988), p. 3

    Google Scholar 

  61. H.H. Law, M.P. Bohrer, P. O’Hara, Recovery of metals from copper smelter furnace flue dust. Residues and Effluents: Processing and Environmental Considerations (1992), pp. 295–310

    Google Scholar 

  62. R.S. Kunter, W.E. Bedal, Chloride-process treatment of smelter flue dusts. JOM 44(12), 35–38 (1992)

    Article  CAS  Google Scholar 

  63. G.J. Roman-Moguel, G. Plascencia, J. Pérez, A. García, Copper recycling from waste pickling solutions. JOM 47(10), 18–19 (1995)

    Article  CAS  Google Scholar 

  64. P.J. Gabb, J.P. Evans, Kennecott Utah Copper Corporation, Hydrometallurgical processing of impurity streams generated during the pyrometallurgy of copper. U.S. Patent 5,616,168, 1997

    Google Scholar 

  65. A. Robles, A.E. Serna, M. Sandez, Alkaline arsenic leaching from smelter flue dust and leaching solution regeneration, in Copper99-Cobre99, International Conference on TMS-AIME, Warrendale, PA (1999), pp. 261–272

    Google Scholar 

  66. E. Vircikova, M. Havlik, Removing as from converter dust by a hydrometallurgical method. JOM 51(9), 20–23 (1999)

    Article  CAS  Google Scholar 

  67. J.J. Ke, R.Y. Qin, Arsenic removal and bismuth recovery from copper smelter flue dust (2000)

    Google Scholar 

  68. M.I. Martín, A. López-Delgado, F.A. López, A.G. Coedo, M.T. Dorado, F.J. Alguacil, Treatment of copper converter flue dust for the separation of metallic/non-metallic copper by hydrometallurgical processing. J. Chem. Eng. Jpn. 36(12), 1498–1502 (2003)

    Article  Google Scholar 

  69. N.T. Beukes, J. Badenhorst, Copper electrowinning: theoretical and practical design. J. South Afr. Inst. Min. Metall. 109(6), 343–356 (2009)

    Google Scholar 

  70. O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermodynamics (1993)

    Google Scholar 

  71. F. Bakhtiari, E. Darezereshki, One-step synthesis of tenorite (CuO) nano-particles from Cu4(SO4)(OH)6 by direct thermal-decomposition method. Mater. Lett. 65(2), 171–174 (2011)

    Article  CAS  Google Scholar 

  72. X. Song, S. Sun, W. Zhang, Z. Yin, A method for the synthesis of spherical copper nanoparticles in the organic phase. J. Colloid Interface Sci. 273(2), 463–469 (2004)

    Article  CAS  Google Scholar 

  73. S. Kapoor, T. Mukherjee, Photochemical formation of copper nanoparticles in poly (N-vinylpyrrolidone). Chem. Phys. Lett. 370(1), 83–87 (2003)

    Article  CAS  Google Scholar 

  74. M. Aslam, G. Gopakumar, T.L. Shoba, I.S. Mulla, K. Vijayamohanan, S.K. Kulkarni, J. Urban, W. Vogel, Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: preparation, structure, and insulating-to-metallic transition. J. Colloid Interface Sci. 255(1), 79–90 (2002)

    Article  CAS  Google Scholar 

  75. H. Zhu, C. Zhang, Y. Yin, Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size. Nanotechnology 16(12), 3079 (2005)

    Article  CAS  Google Scholar 

  76. Y. Wang, P. Chen, M. Liu, Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology 17(24), 6000 (2006)

    Article  CAS  Google Scholar 

  77. S. Panigrahi, S. Kundu, S.K. Ghosh, S. Nath, S. Praharaj, S. Basu, T. Pal, Selective one-pot synthesis of copper nanorods under surfactantless condition. Polyhedron 25(5), 1263–1269 (2006)

    Article  CAS  Google Scholar 

  78. B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 311(2), 417–424 (2007)

    Article  CAS  Google Scholar 

  79. A.A. Athawale, P.P. Katre, M. Kumar, M.B. Majumdar, Synthesis of CTAB–IPA reduced copper nanoparticles. Mater. Chem. Phys. 91(2), 507–512 (2005)

    Article  CAS  Google Scholar 

  80. X. Zhang, D. Zhang, X. Ni, J. Song, H. Zheng, Synthesis and electrochemical properties of different sizes of the CuO particles. J. Nanopart. Res. 10(5), 839–844 (2008)

    Article  CAS  Google Scholar 

  81. E. Darezereshki, F. Bakhtiari, A novel technique to synthesis of tenorite (CuO) nanoparticles from low concentration CuSO4 solution. J. Min. Metall. B 47(1), 73–78 (2011)

    Article  CAS  Google Scholar 

  82. K. Byrappa, Hydrothermal processing, in Kirk-Othmer Encyclopedia of Chemical Technology (2005)

    Google Scholar 

  83. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases. Calphad 26(2), 189–228 (2002)

    Article  CAS  Google Scholar 

  84. Wikipedia 2014 https://en.wikipedia.org/wiki

  85. S. Rosenblum, I.K. Brownfield, Magnetic Susceptibilities of Minerals. US Department of the Interior, US Geological Survey (2000)

    Google Scholar 

  86. Z.A. Zanetell, Penalty element separation from copper concentrates utilizing froth flotation (2007)

    Google Scholar 

  87. O. Font, N. Moreno, G. Aixa, X. Querol, R. Navia, Copper Smelting Flue Dust: A Potential Source of Germanium

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Adeleke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Okanigbe, D.O., Popoola, A.P.I., Adeleke, A.A. (2017). Hydrometallurgical Processing of Copper Smelter Dust for Copper Recovery as Nano-particles: A Review. In: Zhang, L., et al. Energy Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52192-3_21

Download citation

Publish with us

Policies and ethics