Skip to main content

Optical Coherence Tomography and Wide-Field Fluorescein Angiography in Retinopathy of Prematurity

  • Chapter
  • First Online:
Book cover Retinopathy of Prematurity

Abstract

The advent and adaptation of many imaging modalities promise to revolutionize our understanding of retinopathy of prematurity (ROP) by improving the detection, diagnosis, and monitoring of response to treatment of this disease. Diagnosis and classification of ROP traditionally relies on an eye exam by an ophthalmologist expert in this area who characterizes extent and character of retinal vascularization via indirect ophthalmoscopy. Many tools now exist that allow for data acquisition by nurses, technicians, and other trained staff with the images analyzed in a more centralized location. We will focus on two rapidly evolving technologies, optical coherence tomography (OCT), and wide field fluorescein angiography (FA), to better understand how these tools may change our current understanding and management of ROP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21:1361–7.

    Article  CAS  PubMed  Google Scholar 

  2. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science (New York, NY). 1991;254:1178–81.

    Article  CAS  Google Scholar 

  3. Swanson EA, Izatt JA, Hee MR, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18:1864–6.

    Article  CAS  PubMed  Google Scholar 

  4. Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102:217–29.

    Article  CAS  PubMed  Google Scholar 

  5. Hee MR, Puliafito CA, Wong C, et al. Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol. 1995;113:1019–29.

    Article  CAS  PubMed  Google Scholar 

  6. Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014;121:656–66.

    Article  PubMed  Google Scholar 

  7. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113:586–96.

    Article  CAS  PubMed  Google Scholar 

  8. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications. 1995;117:43–8.

    Article  CAS  Google Scholar 

  9. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28:2067–9.

    Article  PubMed  Google Scholar 

  10. Lee JY, Chiu SJ, Srinivasan PP, et al. Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems. Invest Ophthalmol Vis Sci. 2013;54:7595–602.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Folgar FA, Yuan EL, Farsiu S, Toth CA. Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt. 2014;19:16014.

    Article  PubMed  Google Scholar 

  12. Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol. 2005;139:509–17.

    Article  PubMed  Google Scholar 

  13. El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children. Arch Ophthalmol. 2009;127:50–8.

    Article  PubMed  Google Scholar 

  14. Chong GT, Farsiu S, Freedman SF, et al. Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol. 2009;127:37–44.

    Article  PubMed  Google Scholar 

  15. Joshi MM, Trese MT, Capone A Jr. Optical coherence tomography findings in stage 4A retinopathy of prematurity: a theory for visual variability. Ophthalmology. 2006;113:657–60.

    Article  PubMed  Google Scholar 

  16. Vinekar A, Avadhani K, Sivakumar M, et al. Understanding clinically undetected macular changes in early retinopathy of prematurity on spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:5183–8.

    Article  PubMed  Google Scholar 

  17. Vinekar A, Sivakumar M, Shetty R, et al. A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT + HRA) to image supine non-anaesthetized infants: utility demonstrated in aggressive posterior retinopathy of prematurity. Eye (London, England). 2010;24:379–82.

    Google Scholar 

  18. Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol. 2009;147(364–73):e2.

    Google Scholar 

  19. Rothman AL, Folgar FA, Tong AY, Toth CA. Spectral domain optical coherence tomography characterization of pediatric epiretinal membranes. Retina (Philadelphia, Pa) 2014.

    Google Scholar 

  20. Maldonado RS, Izatt JA, Sarin N, et al. Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children. Invest Ophthalmol Vis Sci. 2010;51:2678–85.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hittner HM, Rhodes LM, McPherson AR. Anterior segment abnormalities in cicatricial retinopathy of prematurity. Ophthalmology. 1979;86:803–16.

    Article  CAS  PubMed  Google Scholar 

  22. Gordon RA, Donzis PB. Refractive development of the human eye. Arch Ophthalmol. 1985;103:785–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mactier H, Maroo S, Bradnam M, Hamilton R. Ocular biometry in preterm infants: implications for estimation of retinal illuminance. Invest Ophthalmol Vis Sci. 2008;49:453–7.

    Article  PubMed  Google Scholar 

  24. Gullstrand A. Appendices II and IV. In: Southall JPC, editor. Helmholtz’s treatise on physiological optics. Menasha, WI: Optical Society of America; 1909.

    Google Scholar 

  25. Cook A, White S, Batterbury M, Clark D. Ocular growth and refractive error development in premature infants with or without retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2008;49:5199–207.

    Article  PubMed  Google Scholar 

  26. Moreno TA, O’Connell RV, Chiu SJ, et al. Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT. Invest Ophthalmol Vis Sci. 2013;54:4140–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vajzovic L, Hendrickson AE, O’Connell RV, et al. Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol. 2012;154(779–89):e2.

    Google Scholar 

  28. Maldonado RS, O’Connell RV, Sarin N, et al. Dynamics of human foveal development after premature birth. Ophthalmology. 2011;118:2315–25.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology. 1984;91:603–12.

    Article  CAS  PubMed  Google Scholar 

  30. Hendrickson A, Possin D, Vajzovic L, Toth CA. Histologic development of the human fovea from midgestation to maturity. Am J Ophthalmol. 2012;154(767–78):e2.

    Google Scholar 

  31. Dubis AM, Costakos DM, Subramaniam CD, et al. Evaluation of normal human foveal development using optical coherence tomography and histologic examination. Arch Ophthalmol. 2012;130:1291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yiu G, Pecen P, Sarin N, et al. Characterization of the choroid-scleral junction and suprachoroidal layer in healthy individuals on enhanced-depth imaging optical coherence tomography. JAMA Ophthalmol. 2013.

    Google Scholar 

  33. Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D. Choroidal thickness in childhood. Invest Ophthalmol Vis Sci. 2013;54:3586–93.

    Article  PubMed  Google Scholar 

  34. Samarawickrama C, Huynh SC, Liew G, Burlutsky G, Mitchell P. Birth weight and optic nerve head parameters. Ophthalmology. 2009;116:1112–8.

    Article  PubMed  Google Scholar 

  35. Kandasamy Y, Smith R, Wright IM, Hartley L. Optic disc measurements in full term infants. Br J Ophthalmol. 2012;96:662–4.

    Article  PubMed  Google Scholar 

  36. Wang J, Spencer R, Leffler JN, Birch EE. Characteristics of peripapillary retinal nerve fiber layer in preterm children. Am J Ophthalmol. 2012;153(850–5):e1.

    Article  Google Scholar 

  37. Allingham MJ, Cabrera MT, O’Connell RV, et al. Racial variation in optic nerve head parameters quantified in healthy newborns by handheld spectral domain optical coherence tomography. Journal of AAPOS: Off publ Am Assoc Pediatr Ophthalmol Strabismus/Am Assoc Pediatr Ophthalmol Strabismus. 2013;17:501–6.

    Article  Google Scholar 

  38. Tong AY, El-Dairi M, Maldonado RS, et al. Evaluation of optic nerve development in preterm and term infants using handheld spectral-domain optical coherence tomography. Ophthalmology. 2014.

    Google Scholar 

  39. Maldonado RS, Toth CA. Optical coherence tomography in retinopathy of prematurity: looking beyond the vessels. Clin Perinatol. 2013;40:271–96.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wallace DK, Bremer DL, Good WV, et al. Correlation of recognition visual acuity with posterior retinal structure in advanced retinopathy of prematurity. Arch Ophthalmol. 2012;130:1512–6.

    Article  Google Scholar 

  41. Chavala SH, Farsiu S, Maldonado R, Wallace DK, Freedman SF, Toth CA. Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology. 2009;116:2448–56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Muni RH, Kohly RP, Charonis AC, Lee TC. Retinoschisis detected with handheld spectral-domain optical coherence tomography in neonates with advanced retinopathy of prematurity. Arch Ophthalmol. 2010;128:57–62.

    Article  PubMed  Google Scholar 

  43. Lee AC, Maldonado RS, Sarin N, et al. Macular features from spectral-domain optical coherence tomography as an adjunct to indirect ophthalmoscopy in retinopathy of prematurity. Retina (Philadelphia, Pa). 2011;31:1470–82.

    Google Scholar 

  44. Maldonado RS, O’Connell R, Ascher SB, et al. Spectral-domain optical coherence tomographic assessment of severity of cystoid macular edema in retinopathy of prematurity. Arch Ophthalmol. 2012;130:569–78.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maldonado RS, Freedman SF, Cotten CM, Ferranti JM, Toth CA. Reversible retinal edema in an infant with neonatal hemochromatosis and liver failure. J Am Assoc Pediatr Ophthalmol Strabismus. 2011;15:91–3.

    Article  Google Scholar 

  46. Dubis AM, Subramaniam CD, Godara P, Carroll J, Costakos DM. Subclinical macular findings in infants screened for retinopathy of prematurity with spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1665–71.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Recchia FM, Recchia CC. Foveal dysplasia evident by optical coherence tomography in patients with a history of retinopathy of prematurity. Retina (Philadelphia, Pa). 2007;27:1221–6.

    Google Scholar 

  48. Hammer DX, Iftimia NV, Ferguson RD, et al. Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest Ophthalmol Vis Sci. 2008;49:2061–70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Akerblom H, Holmstrom G, Eriksson U, Larsson E. Retinal nerve fibre layer thickness in school-aged prematurely-born children compared to children born at term. Br J Ophthalmol. 2012;96:956–60.

    Article  PubMed  Google Scholar 

  50. Park KA, Oh SY. Analysis of spectral-domain optical coherence tomography in preterm children: retinal layer thickness and choroidal thickness profiles. Invest Ophthalmol Vis Sci. 2012;53:7201–7.

    Article  PubMed  Google Scholar 

  51. Wu WC, Shih CP, Wang NK, et al. Choroidal thickness in patients with a history of retinopathy of prematurity. JAMA Ophthalmol. 2013;131:1451–8.

    Article  PubMed  Google Scholar 

  52. The international classification of retinopathy of prematurity revisited. Arch Ophthalmol. 2005;123:991–9

    Google Scholar 

  53. Maldonado RS, Yuan E, Tran-Viet D, et al. Three-dimensional assessment of vascular and perivascular characteristics in subjects with retinopathy of prematurity. Ophthalmology. 2014.

    Google Scholar 

  54. Hahn P, Migacz J, O’Connell R, Maldonado RS, Izatt JA, Toth CA. The use of optical coherence tomography in intraoperative ophthalmic imaging. Ophthalmic surg Lasers Imaging: Off J Int Soc Imaging Eye. 2011;42(Suppl):S85–94.

    Article  Google Scholar 

  55. Dayani PN, Maldonado R, Farsiu S, Toth CA. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina (Philadelphia, Pa). 2009;29:1457–68.

    Google Scholar 

  56. Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci. 2011;52:3153–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hahn P, Migacz J, O’Connell R, Izatt JA, Toth CA. Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2013;251:213–20.

    Google Scholar 

  58. Hahn P, Migacz J, O’Donnell R, et al. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device. Retina (Philadelphia, Pa). 2013;33:1328–37.

    Google Scholar 

  59. Chen Z, Milner TE, Dave D, Nelson JS. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett. 1997;22:64–6.

    Article  CAS  PubMed  Google Scholar 

  60. Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, Welch AJ. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett. 1997;22:1439–41.

    Article  CAS  PubMed  Google Scholar 

  61. Kehlet Barton J, Izatt JA, Kulkarni MD, Yazdanfar S, Welch AJ. Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images. Dermatology (Basel, Switzerland). 1999;198:355–61.

    Google Scholar 

  62. Lu CD, Kraus MF, Potsaid B, et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express. 2013;5:293–311.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Witmer MT, Kiss S. Wide-field imaging of the retina. Surv Ophthalmol. 2013;58:143–54.

    Article  PubMed  Google Scholar 

  64. Pomerantzeff O. Equator-plus camera. Invest Ophthalmol. 1975;14:401–6.

    CAS  PubMed  Google Scholar 

  65. Neubauer AS, Kernt M, Haritoglou C, Priglinger SG, Kampik A, Ulbig MW. Nonmydriatic screening for diabetic retinopathy by ultra-widefield scanning laser ophthalmoscopy (Optomap). Graefe’s Arch Clin Exp Ophthalmol. 2008;246:229–35.

    Article  Google Scholar 

  66. Fung TH, Yusuf IH, Smith LM, Brett J, Weston L, Patel CK. Outpatient Ultra wide-field intravenous fundus fluorescein angiography in infants using the Optos P200MA scanning laser ophthalmoscope. Br J Ophthalmol. 2014;98:302–4.

    Article  PubMed  Google Scholar 

  67. Wu C, Petersen RA, VanderVeen DK. RetCam imaging for retinopathy of prematurity screening. Journal of AAPOS: Off publ Am Assoc Pediatr Ophthalmol Strabismus/Am Assoc Pediatr Ophthalmol Strabismus. 2006;10:107–11.

    Article  CAS  Google Scholar 

  68. Schwartz SD, Harrison SA, Ferrone PJ, Trese MT. Telemedical evaluation and management of retinopathy of prematurity using a fiberoptic digital fundus camera. Ophthalmology. 2000;107:25–8.

    Article  CAS  PubMed  Google Scholar 

  69. Roth DB, Morales D, Feuer WJ, Hess D, Johnson RA, Flynn JT. Screening for retinopathy of prematurity employing the retcam 120: sensitivity and specificity. Arch Ophthalmol. 2001;119:268–72.

    CAS  PubMed  Google Scholar 

  70. Ells AL, Holmes JM, Astle WF, et al. Telemedicine approach to screening for severe retinopathy of prematurity: a pilot study. Ophthalmology. 2003;110:2113–7.

    Article  PubMed  Google Scholar 

  71. Chiang MF, Keenan JD, Starren J, et al. Accuracy and reliability of remote retinopathy of prematurity diagnosis. Arch Ophthalmol. 2006;124:322–7.

    Article  PubMed  Google Scholar 

  72. Ng EY, Lanigan B, O’Keefe M. Fundus fluorescein angiography in the screening for and management of retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 2006;43:85–90.

    PubMed  Google Scholar 

  73. Lepore D, Molle F, Pagliara MM, et al. Atlas of fluorescein angiographic findings in eyes undergoing laser for retinopathy of prematurity. Ophthalmology. 2011;118:168–75.

    Article  PubMed  Google Scholar 

  74. Purcaro V, Baldascino A, Papacci P, et al. Fluorescein angiography and retinal vascular development in premature infants. J Matern-Fetal Neonatal Med: Off J Eur Assoc Perinat Med, Fed Asia Ocean Perinat Soc, Int Soc Perinat Obstet. 2012;25(Suppl 3):53–6.

    Google Scholar 

  75. Zepeda-Romero LC, Oregon-Miranda AA, Lizarraga-Barron DS, Gutierrez-Camarena O, Meza-Anguiano A, Gutierrez-Padilla JA. Early retinopathy of prematurity findings identified with fluorescein angiography. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2013;251:2093–7.

    Google Scholar 

  76. Yokoi T, Hiraoka M, Miyamoto M, Kobayashi Y, Nishina S, Azuma N. Vascular abnormalities in aggressive posterior retinopathy of prematurity detected by fluorescein angiography. Ophthalmology. 2009;116:1377–82.

    Article  PubMed  Google Scholar 

  77. Yokoi T, Kobayashi Y, Hiraoka M, Nishina S, Azuma N. Evaluation of scleral buckling for stage 4A retinopathy of prematurity by fluorescein angiography. Am J Ophthalmol. 2009;148(544–50):e1.

    Google Scholar 

  78. Henaine-Berra A, Garcia-Aguirre G, Quiroz-Mercado H, Martinez-Castellanos MA. Retinal fluorescein angiographic changes following intravitreal anti-VEGF therapy. Journal of AAPOS: Off publ Am Assoc Pediatr Ophthalmol Strabismus/Am Assoc Pediatr Ophthalmol Strabismus. 2014;18:120–3.

    Article  Google Scholar 

  79. Hoang QV, Kiernan DF, Chau FY, Shapiro MJ, Blair MP. Fluorescein angiography of recurrent retinopathy of prematurity after initial intravitreous bevacizumab treatment. Arch Ophthalmol. 2010;128:1080–1.

    Article  PubMed  Google Scholar 

  80. Hu J, Blair MP, Shapiro MJ, Lichtenstein SJ, Galasso JM, Kapur R. Reactivation of retinopathy of prematurity after bevacizumab injection. Arch Ophthalmol. 2012;130:1000–6.

    Article  CAS  PubMed  Google Scholar 

  81. Manivannan A, Plskova J, Farrow A, McKay S, Sharp PF, Forrester JV. Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. 2005;140:525–7.

    Article  PubMed  Google Scholar 

  82. Fung TH, Muqit MM, Mordant DJ, Smith LM, Patel CK. Noncontact high-resolution ultra-wide-field oral fluorescein angiography in premature infants with retinopathy of prematurity. JAMA Ophthalmol. 2014;132:108–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Rothman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rothman, A.L., Maldonado, R.S., Vajzovic, L., Toth, C.A. (2017). Optical Coherence Tomography and Wide-Field Fluorescein Angiography in Retinopathy of Prematurity. In: Kychenthal B., A., Dorta S., P. (eds) Retinopathy of Prematurity. Springer, Cham. https://doi.org/10.1007/978-3-319-52190-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52190-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52188-6

  • Online ISBN: 978-3-319-52190-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics