Skip to main content

Structure, Function and Dynamics of Chromatin

  • Chapter
  • First Online:
  • 847 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Chromatin is a DNA-protein polymer, which consists of DNA, structural proteins, non-structural proteins and RNA. During interphase, chromatin encodes the information necessary to maintain the primary functions of the cells. At the same time, the cell holds in a relatively small volume (roughly 4000 \(\upmu \mathrm{m}^3\) of diameter for the nucleus) the entire genome, which is billions of base pairs long and roughly 3 m in length when completely unfolded. Moreover, information needs to be retrieved from this highly condensed structure when a gene needs to be expressed at a fast pace.

Stress is the shortest distance between two homologous chromosomes. Searching for a soul-mate?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This section is partially based on Kirmes et al. (2015).

References

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  • Bassett A, Cooper S, Wu C, Travers A (2009) The folding and unfolding of eukaryotic chromatin. Current Opinion Genet Dev 19(2):159–165

    Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Google Scholar 

  • Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu C-t, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529(7586):418–422

    Google Scholar 

  • Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B (2015) Structural organization of human replication timing domains. FEBS Lett 589(20PartA):2944–2957

    Google Scholar 

  • Branco MR, Pombo A (2007) Chromosome organization: new facts, new models. Trends Cell Biol 17(3):127–134

    Google Scholar 

  • Busch H (1974) The cell nucleus. Academic Press, New York

    Google Scholar 

  • Cook PR (2010) A model for all genomes: the role of transcription factories. J Mol Biol 395(1):1–10

    Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301

    Google Scholar 

  • Cremer T, Cremer C, Schneider T, Baumann H, Hens L, Kirsch-Volders M (1982b) Analysis of chromosome positions in the interphase nucleus of chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet 62(3):201–209

    Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories-a functional nuclear landscape. Current Opinion Cell Biol 18(3):307–316

    Google Scholar 

  • Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett

    Google Scholar 

  • Davies HG (1968) Electron-microscope observations on the organization of hetero-chromatin in certain cells. J Cell Sci 3(1):129–150

    CAS  PubMed  Google Scholar 

  • Davies HG, Small JV (1968) Structural units in chromatin and their orientation on membranes. Nature 217:1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Dehghani H, Dellaire G, Bazett-Jones DP (2005) Organization of chromatin in the interphase mammalian cell. Micron 36(2):95–108

    Google Scholar 

  • Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) Differential large-scale chromatin compaction and intranuclear positioning of transcribed versus non-transcribed transgene arrays containing \(\beta \)-globin regulatory sequences. J Cell Sci 117(19):4603–4614

    Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380

    Google Scholar 

  • Doyle B, Fudenberg G, Imakaev M, Mirny LA (2014) Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput Biol 10(10):e1003867

    Google Scholar 

  • Dubochet J, Adrian M, Schultz P, Oudet P (1986) Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. EMBO J 5(3):519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Everid AC, Small JV, Davies HG (1970) Electron-microscope observations on the structure of condensed chromatin: evidence for orderly arrays of unit threads on the surface of chicken erythrocyte nuclei. J Cell Sci 7(1):35–48

    CAS  PubMed  Google Scholar 

  • Filion GJ, van Bemmel JG, Ulrich B, Wendy T, Jop K, Ward LD, Wim B, de Castro IJ, Kerkhoven RM, Bussemaker HJ et al (2010) Systematic protein location mapping reveals five principal chromatin types in drosophila cells. Cell 143(2):212–224

    Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci 73(6):1897–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenster JH, Allfrey VG, Mirsky AE (1963) Repressed and active chromatin isolated from interphase lymphocytes. Proc Natl Acad Sci 50(6):1026–1032

    Google Scholar 

  • Fussner E, Ching RW, Bazett-Jones DP (2011) Living without 30 nm chromatin fibers. Trends Biochem Sci 36(1):1–6

    Google Scholar 

  • Gall J (1963) Chromosome fibers from an interphase nucleus. Science 139(3550):120–121

    Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci 63(2):378–383

    Google Scholar 

  • Haggis GH (1992) Sample preparation for electron microscopy of internal cell structure. Microsc Res Tech 22(2):151–159

    Google Scholar 

  • Haggis GH, Pawley JB (1988) Freeze-fracture of 3T3 cells for high-resolution scanning electron microscopy. J Microsc 150(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420

    Google Scholar 

  • Harmon B, Sedat J (2005) Cell-by-cell dissection of gene expression and chromosomal interactions reveals consequences of nuclear reorganization. PLoS Biol 3(3):e67

    Google Scholar 

  • Hay ED, Revel JP (1963) The fine structure of the DNP component of the nucleus: An electron microscopic study utilizing autoradiography to localize DNA synthesis. J Cell Biol 16(1):29–51

    Google Scholar 

  • Hoshi O, Ushiki T (2001) Three-dimensional structure of G-banded human metaphase chromosomes observed by atomic force microscopy. Arch Histol Cytol 64(5):475–482

    Google Scholar 

  • Ibn-Salem J, Köhler S, Love MI, Chung H-R, Huang N, Hurles ME, Haendel M, Washington NL, Smedley D, Mungall CJ, et al (2014) Deletions of chromosomal regulatory boundaries are associated with congenital. Genome Biol 15(9):423

    Google Scholar 

  • Iborra FJ, Pombo A, Jackson DA, Cook PR (1996) Active RNA polymerases are localized within discrete transcription factories in human nuclei. J Cell Sci 109(6):1427–1436

    Google Scholar 

  • Johnson AB, Barton MC (2007) Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutation Res/Fundam Mol Mech Mutagen 618(1):149–162

    Google Scholar 

  • Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14AC marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC genomics 13(1):424

    Google Scholar 

  • Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U et al (2015) A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 16(1):1–19

    Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294

    Google Scholar 

  • Kossel A (1884) Ueber einen peptonartigen bestandtheil des zellkerns. Zeitschrift für physiologische Chemie 8(6):511–515

    Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 å resolution. Nature 389(6648):251–260

    Google Scholar 

  • Luzzati V, Nicolaieff A (1963) The structure of nucleohistones and nucleoprotamines. J Mol Biol 7(2):142–163

    Google Scholar 

  • Maeshima K, Imai R, Tamura S, Nozaki T (2014) Chromatin as dynamic 10-nm fibers. Chromosoma 123(3):225–237

    Google Scholar 

  • Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonhardt H, Eick D, Cremer C, Cremer T (2010) Functional nuclear organization of transcription and DNA replication a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harbor Symp Quant Biol 75:475–492; Cold Spring Harbor Laboratory Press (2010)

    Google Scholar 

  • Mayer R, Brero A, Von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6(1):44

    Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Google Scholar 

  • Mirsky AE, Ris H (1951) The desoxyribonucleic acid content of animal cells and its evolutionary significance. J General Physiol 34(4):451

    Google Scholar 

  • Mora-Bermúdez F, Ellenberg J (2007) Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods 41(2):158–167

    Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (\(\nu \) bodies). Science 183(4122):330–332

    Google Scholar 

  • Olins DE, Olins AL (2003) Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol 4(10):809–814

    Google Scholar 

  • Ostashevsky J (1998) A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes. Mol Biol Cell 9(11):3031–3040

    Google Scholar 

  • Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4(4):281–300

    Article  CAS  PubMed  Google Scholar 

  • Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Scott Hansen R, Canfield TK et al (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515(7527):402–405

    Google Scholar 

  • Popken J, Graf A, Krebs S, Blum H, Schmid VJ, Strauss A, Guengoer T, Zakhartchenko V, Wolf E, Cremer T (2015) Remodeling of the nuclear envelope and lamina during bovine preimplantation development and its functional implications. PLoS One

    Google Scholar 

  • Prakash K, Fournier D, Redl S, Best G, Borsos M, Tiwari VK, Tachibana-Konwalski K, Ketting RF, Parekh SH, Cremer C et al (2015) Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proc Natl Acad Sci 112(47):14635–14640

    Google Scholar 

  • Puvion E, Puvion-Dutilleul F (1996) Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules. Exp Cell Res 229(2):217–225

    Google Scholar 

  • Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Ido M, Omer AD, Lander ES et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680

    Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1983) Structure of the nucleosome core particle at 7 a resolution. Nature 311(5986):532–537

    Article  Google Scholar 

  • Sexton T, Umlauf D, Kurukuti S, Fraser P (2007) The role of transcription factories in large-scale structure and dynamics of interphase chromatin. Semin Cell Dev Biol 18:691–697 (Elsevier)

    Google Scholar 

  • Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J et al (2014) Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7:8

    Google Scholar 

  • Stack SM, Brown DB, WC Dewey (1977) Visualization of interphase chromosomes. J Cell Sci 26(1):281–299

    Google Scholar 

  • Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10(7):457–466

    Google Scholar 

  • Thoma F, Koller Th, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83(2):403–427

    Google Scholar 

  • Ushiki T, Hoshi O (2008) Atomic force microscopy for imaging human metaphase chromosomes. Chromosom Res 16(3):383–396

    Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock CL, Frado L-LY, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99(1):42–52

    Google Scholar 

  • Zessin PJM, Finan K, Heilemann M (2012) Superresolution fluorescence imaging of chromosomal DNA. J Struct Biol 177(2):344–348

    Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosom Res 1(2):93–106

    Google Scholar 

  • Zorn C, Cremer T, Cremer C, Zimmer J (1976) Laser UV microirradiation of interphase nuclei and post-treatment with caffeine. Hum Genet 35(1):83–89

    Google Scholar 

  • Zorn C, Cremer C, Cremer T, Zimmer J (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus: distribution in interphase and metaphase. Exp Cell Res 124(1):111–119

    Google Scholar 

  • Żurek-Biesiada D, Szczurek AT, Prakash K, Mohana GK, Lee H-K, Roignant J-Y, Birk U, Dobrucki JW, Cremer C (2015) Localization microscopy of DNA in situ using vybrant dyecycle violet fluorescent probe: a new approach to study nuclear nanostructure at single molecule resolution. Exp Cell Res

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Prakash .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prakash, K. (2017). Structure, Function and Dynamics of Chromatin. In: Chromatin Architecture. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-52183-1_3

Download citation

Publish with us

Policies and ethics