Skip to main content

WEM: A New Family of White-Box Block Ciphers Based on the Even-Mansour Construction

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2017 (CT-RSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10159))

Included in the following conference series:

Abstract

White-box cryptosystems aim at providing security against an adversary that has access to the encryption process. As a countermeasure against code lifting (in which the adversary simply distributes the code of the cipher), recent white-box schemes aim for ‘incompressibility’, meaning that any useful representation of the secret key material is memory-consuming.

In this paper we introduce a new family of white-box block ciphers relying on incompressible permutations and the classical Even-Mansour construction. Our ciphers allow achieving tradeoffs between encryption speed and white-box security that were not obtained by previous designs. In particular, we present a cipher with reasonably strong space hardness of \(2^{15}\) bytes, that runs at less than 100 cycles per byte.

O. Dunkelman—The fourth author was supported in part by the Israeli Science Foundation through grant No. 827/12 and by the Commission of the European Communities through the Horizon 2020 program under project number 645622 PQCRYPTO.

N. Keller—The fifth author was supported by the Alon Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We may also reuse S-boxes to obtain greater flexibility, as noted below.

  2. 2.

    We note that instead, a per-domain fixed key can be used, e.g., each country gets its own key, or even a per-user key. However, we assume this key to be publicly known.

  3. 3.

    Interestingly, it is shown in [13] that for certain types of schemes, the gap between the number of rounds required to resist the best known attack and the the number of rounds required to obtain provable security is not large.

  4. 4.

    Resistance to such attacks is addressed by the strong incompressibility definition of [13], which also gives a scheme (called WhiteKey) that provably achieves this security notion. However, WhiteKey is a key generator rather than a block cipher, and hence is incomparable to our scheme.

  5. 5.

    For the sake of convenience, we rename the block cipher instance parameters for both previous space-hard designs [5, 13].

  6. 6.

    We note that in terms of provable security, it was shown in [13] for WhiteBlock (and similar arguments can be applied to our scheme) that the analysis for an arbitrary set of S-box entries should give a close estimation to the number of rounds required to achieve the desired security level of 112 bits.

  7. 7.

    We point out that the adversary can reduce the number of guesses in case of common missed S-boxes entries. We do not expect this to give the adversary a significant advantage, as the adversary can only miss a small number of S-box entries in the encryption which are likely to be distinct. Nevertheless, this is a shortcoming of our analysis (which is also present in the analysis of [13]).

  8. 8.

    It is also possible to instantiate our scheme for values of m that do not divide n, as briefly discussed in Sect. 4.4.

  9. 9.

    This factor is even smaller when considering representation of a fraction of the S-box entries.

References

  1. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Berlin (2004). doi:10.1007/978-3-540-30564-4_16

    Chapter  Google Scholar 

  2. Biryukov, A.: The boomerang attack on 5 and 6-round reduced AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 11–15. Springer, Berlin (2005). doi:10.1007/11506447_2

    Chapter  Google Scholar 

  3. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on the ASASA structure: black-box, white-box, and public-key (extended abstract). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84. Springer, Berlin (2014). doi:10.1007/978-3-662-45611-8_4

    Google Scholar 

  4. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Berlin (2000). doi:10.1007/3-540-45539-6_41

    Chapter  Google Scholar 

  5. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–6 October 2015, pp. 1058–1069. ACM (2015). http://doi.acm.org/10.1145/2810103.2813699

  6. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Berlin (2003). doi:10.1007/3-540-36492-7_17

    Chapter  Google Scholar 

  7. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498. Springer, Berlin (1993). doi:10.1007/3-540-57332-1_46

    Chapter  Google Scholar 

  8. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 247–264. Springer, Berlin (2014). doi:10.1007/978-3-662-43414-7_13

    Chapter  Google Scholar 

  9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on iterated Even-Mansour encryption schemes. J. Cryptology 29(4), 697–728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the Even-Mansour encryption scheme. J. Cryptology 28(1), 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptology 10(3), 151–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research. Oliver and Boyd, London (1938)

    MATH  Google Scholar 

  13. Fouque, P., Karpman, P., Kirchner, P., Minaud, B.: Efficient and Provable White-Box Primitives. IACR Cryptology ePrint Archive 2016, 642 (2016). http://eprint.iacr.org/2016/642

  14. Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA cryptosystem with expanding S-boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 475–490. Springer, Berlin (2015). doi:10.1007/978-3-662-47989-6_23

    Chapter  Google Scholar 

  15. Lange, T., Lauter, K.E., Lisonek, P.: Selected Areas in Cryptography – SAC 2013. LNCS, vol. 8282. Springer, Berlin (2014). doi:10.1007/978-3-662-43414-7

    Book  MATH  Google Scholar 

  16. Lepoint, T., Rivain, M., Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 265–285. Springer, Berlin (2014). doi:10.1007/978-3-662-43414-7_14

    Chapter  Google Scholar 

  17. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 3–27. Springer, Berlin (2015). doi:10.1007/978-3-662-48800-3_1

    Chapter  Google Scholar 

  18. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with a secret S-box. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 175–189. Springer, Berlin (2015). doi:10.1007/978-3-662-48116-5_9

    Chapter  Google Scholar 

  19. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box DES implementations with arbitrary external encodings. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77360-3_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Dinur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cho, J. et al. (2017). WEM: A New Family of White-Box Block Ciphers Based on the Even-Mansour Construction. In: Handschuh, H. (eds) Topics in Cryptology – CT-RSA 2017. CT-RSA 2017. Lecture Notes in Computer Science(), vol 10159. Springer, Cham. https://doi.org/10.1007/978-3-319-52153-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52153-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52152-7

  • Online ISBN: 978-3-319-52153-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics