Skip to main content

Evolution of Foot Orthoses in Sports

  • Chapter
  • First Online:
Athletic Footwear and Orthoses in Sports Medicine

Abstract

Foot orthoses have been used for well over 200 years by the medical profession for the treatment of various pathologies of the foot and lower extremity [1, 2]. Starting from their simple origins as leather, cork, and/or metallic in-shoe arch supports, foot orthoses have gradually evolved into a complex assortment of in-shoe medical devices that may be fabricated from a multitude of synthetic and natural materials to accomplish the intended therapeutic goals for the injured patient. For the clinician that treats both athletic and nonathletic injuries of the foot and lower extremity, foot orthoses are an invaluable therapeutic tool in the treatment of many painful pathologies of the foot and lower extremity, in the prevention of new injuries in the foot and lower extremity and in the optimization of the biomechanics of the individual during sports and other weight-bearing activities. Because of their therapeutic effectiveness in the treatment of a wide range of painful mechanically based pathologies in the human locomotor apparatus, foot orthoses are often considered by many podiatrists, sports physicians, and foot-care specialists to be one of the most important treatment modalities for these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuster RO. A history of orthopedics in podiatry. J Am Podiatry Assoc. 1974;64:332.

    Article  CAS  PubMed  Google Scholar 

  2. Camper P. On the best form of shoe. In: The foot and its covering (trans: James Dowie). London: Hardwicke; 1861. p. xxvii–44. (Translated from Dutch into English).

    Google Scholar 

  3. Dorland’s illustrated medical dictionary. 25th ed. W.B. Saunders, Philadelphia; 1974.

    Google Scholar 

  4. Wu KW. Foot orthoses: principles and clinical applications. Baltimore: Williams and Wilkins; 1990. p. 97.

    Google Scholar 

  5. Kirby KA. Foot and lower extremity biomechanics II: Precision Intricast newsletters, 1997–2002. Payson, AZ: Precision Intricast, Inc.; 2002.

    Google Scholar 

  6. Durlacher L. A concise treatise on corns, bunions, and the disorders of nails with advice for the general management of the feet. London: Simpkin Marshall and Co; 1845. p. 30.

    Google Scholar 

  7. Dagnall JC. History of foot supports. British J Chiropody. 1967;32(1):5–7.

    Google Scholar 

  8. Whitman R. Observations of forty-five cases of flat-foot with particular reference to etiology and treatment. Boston Med Surg J. 1888;118:598.

    Article  Google Scholar 

  9. Whitman R. The importance of positive support in the curative treatment of weak feet and a comparison of the means employed to assure it. Am J Orthop Surg. 1913;11:215–30.

    Google Scholar 

  10. Roberts PW. The initial strain in weak foot, its mechanics, and a new method of treatment. N Y Med J. 1915;102(9):441–2.

    Google Scholar 

  11. Morton DJ. The human foot: its evolution, physiology and functional disorders. New York: Columbia University Press; 1935.

    Google Scholar 

  12. Levy B. An appliance to induce toe flexion on weight bearing. J Natl Assoc Chirop. 1950;40(6):24–33.

    CAS  PubMed  Google Scholar 

  13. Helfet AJ. A new way of treating flat feet in children. Lancet. 1956;1:262–7.

    Article  Google Scholar 

  14. Root ML. How was the Root functional orthotic developed? Podiatry Arts Lab Newsletter. 1981.

    Google Scholar 

  15. Root ML. Functional orthoses: hype or help? Pacesetter Magazine, California College of Podiatric Medicine. March–April 1982;2(1):6–12.

    Google Scholar 

  16. Root ML. Indications for the use of functional orthoses. Podiatry Arts Lab Newsletter. Pekin, Illinois, Winter 1982.

    Google Scholar 

  17. Root ML. Development of the functional orthosis. Clin Podiatr Med Surg. 1994;11:183–210.

    CAS  PubMed  Google Scholar 

  18. Lee WE. Podiatric biomechanics: an historical appraisal and discussion of the Root model as a clinical system of approach in the present context of theoretical uncertainty. Clin Podiatr Med Surg. 2001;18:555–684.

    CAS  PubMed  Google Scholar 

  19. Root ML, Orien WP, Weed JH, Hughes RJ. Biomechanical examination of the foot, vol. Volume 1. Los Angeles: Clinical Biomechanics Corporation; 1971.

    Google Scholar 

  20. Henderson WH, Campbell JW. U.C.B.L. shoe insert casting and fabrication. Technical report 53. Biomechanics Laboratory, University of California, San Francisco. 1967.

    Google Scholar 

  21. Blake RL, Denton JA. Functional foot orthoses for athletic injuries: a retrospective study. J Am Podiatr Med Assoc. 1985;75:359–62.

    Article  CAS  PubMed  Google Scholar 

  22. Blake RL. Inverted functional orthoses. J Am Podiatr Med Assoc. 1986;76:275–6.

    Article  CAS  PubMed  Google Scholar 

  23. Blake RL, Ferguson H. Foot orthoses for the severe flatfoot in sports. J Am Podiatr Med Assoc. 1991;81:549.

    Article  CAS  PubMed  Google Scholar 

  24. Kirby KA. The medial heel skive technique: improving pronation control in foot orthoses. J Am Podiatr Med Assoc. 1992;82:177–88.

    Article  CAS  PubMed  Google Scholar 

  25. Kirby KA. Foot and lower extremity biomechanics: a ten year collection of Precision Intricast newsletters. Payson, Arizona: Precision Intricast, Inc.; 1997.

    Google Scholar 

  26. Valmassy RL, editor. Clinical biomechanics of the lower extremities. St. Louis: Mosby; 1996.

    Google Scholar 

  27. Sackett DL, Rosenberg WMC, Gray JAM, et al. Evidence based medicine: what it is and what it isn’t. Br Med J. 1996;312:71–2.

    Article  CAS  Google Scholar 

  28. Kirby KA. Emerging concepts in podiatric biomechanics. Podiatry Today. 2006;19(12):36–48.

    Google Scholar 

  29. Van Gheluwe B, Kirby KA. Foot biomechanics and podiatry: research meets the clinical world. Footwear Sci. 2009;1:79–80.

    Article  Google Scholar 

  30. Van Gheluwe B, Kirby KA. Research and clinical synergy in foot and lower extremity biomechanics. Footwear Sci. 2010;2:111–22.

    Article  Google Scholar 

  31. Eggold JF. Orthotics in the prevention of runner’s overuse injuries. Phys Sportsmed. 1981;9:181–5.

    Article  Google Scholar 

  32. D’Ambrosia RD. Orthotic devices in running injuries. Clin Sports Med. 1985;4:611–8.

    PubMed  Google Scholar 

  33. Dugan RC, D’Ambrosia RD. The effect of orthotics on the treatment of selected running injuries. Foot Ankle. 1986;6:313.

    Google Scholar 

  34. Kilmartin TE, Wallace WA. The scientific basis for the use of biomechanical foot orthoses in the treatment of lower limb sports injuries—a review of the literature. Br J Sports Med. 1994;28:180–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gross ML, Davlin LB, Evanski PM. Effectiveness of orthotic shoe inserts in the long distance runner. Am J Sports Med. 1991;19:409–12.

    Article  CAS  PubMed  Google Scholar 

  36. Saxena A, Haddad J. The effect of foot orthoses on patellofemoral pain syndrome. J Am Podiatr Med Assoc. 2003;93:264–71.

    Article  PubMed  Google Scholar 

  37. Donatelli R, Hurlbert C, Conaway D, St. Pierre R. Biomechanical foot orthotics: a retrospective study. J Orthop Sports Phys Ther. 1988;10:205–12.

    Article  CAS  PubMed  Google Scholar 

  38. Moraros J, Hodge W. Orthotic survey: preliminary results. J Am Podiatr Med Assoc. 1993;83:139–48.

    Article  CAS  PubMed  Google Scholar 

  39. Walter JH, Ng G, Stoitz JJ. A patient satisfaction survey on prescription custom-molded foot orthoses. J Am Podiatr Med Assoc. 2004;94:363–7.

    Article  PubMed  Google Scholar 

  40. Kusomoto A, Suzuki T, Yoshida H, Kwon J. Intervention study to improve quality of life and health problems of community-living elderly women in Japan by shoe fitting and custom-made insoles. Gerontology. 2007;22:110–8.

    Google Scholar 

  41. Franklyn-Miller A, Wilson C, Bilzon J, McCrory P. Foot orthoses in the prevention of injury in initial military training. A randomized controlled trial. Am J Sports Med. 2011;39:30–7.

    Article  PubMed  Google Scholar 

  42. Finestone A, Giladi M, Elad H, et al. Prevention of stress fractures using custom biomechanical shoe orthoses. Clin Orthop Relat Res. 1999;360:182–90.

    Article  Google Scholar 

  43. Simkin A, Leichter I, Giladi M, et al. Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle. 1989;10:25–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wrobel JS, Fleischer AE, Crews RT, Jarret B, Najafi B. A randomized controlled trial of custom foot orthoses for the treatment of plantar heel pain. J Am Podiatr Med Assoc. 2015;105(4):281–94.

    Article  PubMed  Google Scholar 

  45. Gross MT, Byers JM, Krafft JL, et al. The impact of custom semirigid foot orthotics on pain and disability for individuals with plantar fasciitis. J Orthop Sports Phys Ther. 2002;32:149–57.

    Article  PubMed  Google Scholar 

  46. Collins N, Crossley K, et al. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: randomised clinical trial. Br J Sports Med. 2009;43:169–71.

    Article  PubMed  Google Scholar 

  47. Eng JJ, Pierrynowski MR. Evaluation of soft foot orthotics in the treatment of patellofemoral pain syndrome. Phys Ther. 1993;73:62–70.

    Article  CAS  PubMed  Google Scholar 

  48. Barton CJ, Menz HB, Crossley KM. The immediate effects of foot orthoses on functional performance in individuals with patellofemoral pain syndrome. Br J Sports Med. 2011;45:193–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mills K, et al. A randomised control trial of short term efficacy of in-shoe foot orthoses compared with a wait and see policy for anterior knee pain and the role of foot mobility. Br J Sports Med. 2011;46:247–52.

    Article  PubMed  Google Scholar 

  50. Thompson JA, Jennings MB, Hodge W. Orthotic therapy in the management of osteoarthritis. J Am Podiatr Med Assoc. 1992;82:136–9.

    Article  CAS  PubMed  Google Scholar 

  51. Halstead J, Keenan AM, McGonagle D, Conaghan P, Redmond A. An exploration into the effect of foot orthoses on bone marrow lesions associated with mechanical foot pain. J Foot Ankle Res. 2014;7(Suppl 2):A1. http://www.footankleres.com/content/7/A1.

  52. Slattery M, Tinley P. The efficacy of functional foot orthoses in the control of pain and ankle joint disintegration in hemophilia. J Am Podiatr Med Assoc. 2001;91:240–4.

    Article  CAS  PubMed  Google Scholar 

  53. Chalmers AC, Busby C, Goyert J, et al. Metatarsalgia and rheumatoid arthritis-a randomized, single blind, sequential trial comparing two types of foot orthoses and supportive shoes. J Rheumatol. 2000;27:1643–7.

    CAS  PubMed  Google Scholar 

  54. Woodburn J, Barker S, Helliwell PS. A randomized controlled trial of foot orthoses in rheumatoid arthritis. J Rheumatol. 2002;29:1377–83.

    PubMed  Google Scholar 

  55. Mejjad O, Vittecoq O, Pouplin S, et al. Foot orthotics decrease pain but do not improve gait in rheumatoid arthritis patients. Joint Bone Spine. 2004;71:542–5.

    Article  PubMed  Google Scholar 

  56. Powell M, Seid M, Szer IA. Efficacy of custom foot orthotics in improving pain and functional status in children with juvenile idiopathic arthritis: a randomized trial. J Rheumatol. 2005;32:943–50.

    PubMed  Google Scholar 

  57. Coda A, Fowlie PW, Davidson JE, Walsh J, Carline T, Santos D. Foot orthoses in children with juvenile idiopathic arthritis: a randomised controlled trial. Arch Dis Child. 2014;99(7):649–51. doi:10.1136/archdischild-2013-305166.

    Article  PubMed  Google Scholar 

  58. Burns J, Crosbie J, Ouvrier R, Hunt A. Effective orthotic therapy for the painful cavus foot. J Am Podiatr Med Assoc. 2006;96:205–11.

    Article  PubMed  Google Scholar 

  59. Postema K, Burm PE, Zande ME, Limbeek J. Primary metatarsalgia: the influence of a custom moulded insole and a rockerbar on plantar pressure. Prosthet Orthot Int. 1998;22:35–44.

    CAS  PubMed  Google Scholar 

  60. Hodge MC, Bach TM, Carter GM. Orthotic management of plantar pressure ad pain in rheumatoid arthritis. Clin Biomech. 1999;14:567–75.

    Article  CAS  Google Scholar 

  61. Raspovic A, et al. Effect of customized insoles on vertical plantar pressures in sites of previous neuropathic ulceration in the diabetic foot. Foot. 2000;10:133–8.

    Article  Google Scholar 

  62. Li CY, et al. Biomechanical evaluation of foot pressure and loading force during gait in RA patients with and without foot orthoses. Kurume Med J. 2000;47:211–7.

    Article  CAS  PubMed  Google Scholar 

  63. Lobmann R, et al. Effects of preventative footwear on foot pressure as determined by pedobarography in diabetic patients: a prospective study. Diabet Med. 2001;18:314–9.

    Article  CAS  PubMed  Google Scholar 

  64. Duffin AC, Kidd R, Chan A, Donaghue KC. High plantar pressure and callus in diabetic adolescents. Incidence and treatment. J Am Podiatr Med Assoc. 2003;93:214–20.

    Article  PubMed  Google Scholar 

  65. Pham T, et al. Laterally elevated wedged insoles in the treatment of medial knee OA: a two-year prospective randomized controlled study. Osteoarthritis Cartilage. 2004;12:46–55.

    Article  CAS  PubMed  Google Scholar 

  66. Rubin R, Menz HB. Use of laterally wedged custom foot orthoses to reduce pain associated with medial knee osteoarthritis: a preliminary investigation. J Am Podiatr Med Assoc. 2005;95:347–52.

    Article  PubMed  Google Scholar 

  67. Crenshaw SJ, Pollo FE, Calton EF. Effects of lateral-wedged insoles on kinetics at the knee. Clin Orthop Relat Res. 2000;375:185–92.

    Article  Google Scholar 

  68. Butler RJ, Marchesi S, Royer T, Davis IS. The effect of a subject-specific amount of lateral wedge on knee mechanics in patients with medial knee osteoarthritis. J Orthop Res. 2007;25(9):1121–7.

    Article  PubMed  Google Scholar 

  69. Hinman RS, Bowles KA, Payne C, Bennell KL. Effect of length on laterally-wedged insoles in knee osteoarthritis. Arthritis Care Res. 2008;59(1):144–7.

    Article  Google Scholar 

  70. Shelburne KB, Torry MR, Steadman JR, Pandy MG. Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait. Clin Biomech. 2008;23(6):814–21.

    Article  Google Scholar 

  71. Hinman RS, Payne C, Metcalf BR, Wrigley TV, Bennell KL. Lateral wedges in knee osteoarthritis: what are their immediate clinical and biomechanical effects and can these predict a three-month clinical outcome? Arthritis Care Res. 2008;59(3):408–15.

    Article  Google Scholar 

  72. Butler RJ, Barrios JA, Royer T, Davis IS. Effect of laterally wedged foot orthoses on rearfoot and hip mechanics in patients with medial knee osteoarthritis. Prosthet Orthot Int. 2009;33(2):107–16.

    Article  PubMed  Google Scholar 

  73. Russell EM, Hamill J. Lateral wedges decrease biomechanical risk factors for knee osteoarthritis in obese women. J Biomech. 2011;44(12):2286–91.

    Article  PubMed  Google Scholar 

  74. Hinman RS, Bowles KA, Metcalf BB, Wrigley TV, Bennell KL. Lateral wedge insoles for medial knee osteoarthritis. Effects on lower limb frontal plane biomechanics. Clin Biomech. 2012;27(1):27–33.

    Article  Google Scholar 

  75. Fantini Pagani CH, Hinrichs M, Bruggermann GP. Kinetic and kinematic changes with the use of valgus knee brace and lateral wedge insoles in patietns with medial knee osteoarthritis. J Orthop Res. 2012;30(7):1125–32.

    Article  PubMed  Google Scholar 

  76. Hsu WC, Jhong YC, Chen HL, et al. Immediate and long-term efficacy of laterally-wedged insoles on persons with bilateral medial knee osteoarthritis during walking. Biomed Eng Online. 2015;14(1):43. doi:10.1186/s12938-015-0040-6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kakihana W, Akai M, Yamasaki N, Takashima T, Nakazawa K. Changes of joint moments in the gait of normal subjects wearing lateral wedged insoles. Am J Phys Med Rehabil. 2004;83:273–8.

    Article  PubMed  Google Scholar 

  78. Kakihana W, Akai M, Nakazawa K, Takashima T, Naito K, Torii S. Effects of laterally wedged insoles on knee and subtalar joint moments. Arch Phys Med Rehabil. 2005;86(7):1465–71.

    Article  PubMed  Google Scholar 

  79. Haim A, Wolf A, Rubin G, Genis Y, Khoury M, Rozen N. Effect of center of pressure modulation on knee adduction moment in medial compartment knee osteoarthritis. J Orthop Res. 2011;29(11):1668–74.

    Article  PubMed  Google Scholar 

  80. Shimada S, Kobayashi S, Wada M, et al. Effects of disease severity on response to lateral wedged shoe insole for medial compartment knee osteoarthritis. Arch Phys Med Rehabil. 2006;87(11):1436–41.

    Article  PubMed  Google Scholar 

  81. Van Raaij TM, Reigman M, Brouwer RW, Bierma-Zeinstra SMA, Verhaar JAN. Medial knee osteoarthritis treated by insoles or braces: a randomized trial. Clin Orthop Relat Res. 2010;468:1926–32.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rafiaee M, Karimi MT. The effects of various kinds of lateral wedge insoles on performance of individuals with knee joint osteoarthritis. Int J Prev Med. 2012;3(10):693–8.

    PubMed  PubMed Central  Google Scholar 

  83. Skou ST, Hojgaard L, Simonsen OH. Customized foot insoles have a positive effect on pain, function, and quality of life in patients with medial knee osteoarthritis. J Am Podiatr Med Assoc. 2013;103(1):50–5.

    Article  PubMed  Google Scholar 

  84. Marks R, Penton L. Are foot orthotics efficacious for treating painful medial compartment knee osteoarthritis? A review of the literature. Int J Clin Pract. 2004;58:49–57.

    Article  CAS  PubMed  Google Scholar 

  85. Guskiewicz KM, Perrin DH. Effects of orthotics on postural sway following inversion ankle sprain. J Orthop Sports Phys Ther. 1996;23:326–31.

    Article  CAS  PubMed  Google Scholar 

  86. Hertel J, Denegar CR, et al. Effect of rearfoot orthotics on postural control in healthy subjects. J Sport Rehabil. 2001;10:36–47.

    Article  Google Scholar 

  87. Rome K, Brown CL. Randomized clinical trial into the impact of orthoses on balance parameters in excessively pronated feet. Clin Rehabil. 2004;18:624–30.

    Article  CAS  PubMed  Google Scholar 

  88. Gross MT, Mercer VS, Lin FC. Effects of foot orthoses on balance in older adults. J Orthop Sports Phys Ther. 2012;42(7):649–57.

    Article  PubMed  Google Scholar 

  89. De Morais BC, et al. The effect of foot orthoses on balance, foot pain and disability in elderly women with osteoporosis: a randomized clinical trial. Rheumatology (Oxford). 2013;52(3):515–22.

    Article  Google Scholar 

  90. Rose GK. Correction of the pronated foot. J Bone Joint Surg. 1958;40B:674–83.

    Google Scholar 

  91. Rose GK. Correction of the pronated foot. J Bone Joint Surg. 1962;44B:642–7.

    Google Scholar 

  92. Sgarlato TE, editor. A compendium of podiatric biomechanics. San Francisco: California College of Podiatric Medicine; 1971.

    Google Scholar 

  93. Kirby KA, Green DR. Evaluation and nonoperative management of pes valgus. In: DeValentine S, editor. Foot and ankle disorders in children. New York: Churchill-Livingstone; 1992. p. 295–327.

    Google Scholar 

  94. Root ML, Weed JH. Personal communication. 1984.

    Google Scholar 

  95. Kirby KA. Methods for determination of positional variations in the subtalar joint axis. J Am Podiatr Med Assoc. 1987;77:228–34.

    Article  CAS  PubMed  Google Scholar 

  96. De Schepper J, Van Alsenoy K, Rijckaert J, De Mits S, Lootens T, Roosen P. Intratest reliability in determining the subtalar joint axis using the palpation technique described by K. Kirby. J Am Podiatr Med Assoc. 2012;102(2):122–9.

    Article  PubMed  Google Scholar 

  97. Van Alsenoy KK, D’Août K, Vereecke E, De Schepper J, Santos D. The subtalar joint axis palpation technique: Part 2—results on reliability and validity using cadaver feet. J Am Podiatr Med Assoc. 2014;104(4):365–74.

    Article  PubMed  Google Scholar 

  98. Kirby KA. Rotational equilibrium across the subtalar joint axis. J Am Podiatr Med Assoc. 1989;79:1–14.

    Article  CAS  PubMed  Google Scholar 

  99. Kirby KA. Subtalar joint axis location and rotational equilibrium theory of foot function. J Am Podiatr Med Assoc. 2001;91:465–88.

    Article  CAS  PubMed  Google Scholar 

  100. Blake RL, Ferguson H. The inverted orthotic technique: its role in clinical biomechanics. In: Valmassy RL, editor. Clinical biomechanics of the lower extremities. St. Louis: Mosby-Year Book; 1996. p. 465–97.

    Google Scholar 

  101. Bonanno DR, Zhang CY, Farrugia RC, Bull MG, Raspovic AM, Bird AR, Landorf KB. The effect of different depths of medial heel skive on plantar pressures. J Foot Ankle Res. 2012;5(Suppl 1):20. doi:10.1186/1757-1146-5-20.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Harradine P, Collins S, Webb C, Bevan L. The medial oblique shell inclination technique: a method to increase subtalar supination moments in foot orthoses. J Am Podiatr Med Assoc. 2011;101(6):523–30.

    Article  PubMed  Google Scholar 

  103. Gardner C, Coull D, Coull R. DC inverted wedge technique. http://www.equusmedical.com/DCInverted/dcinver.htm. Accessed 30 Aug 2015.

  104. Landorf K, Keenan AM, Rushworth AL. Foot orthosis prescription habits of Australian and New Zealand podiatric physicians. J Am Podiatr Med Assoc. 2001;91(4):174–83.

    Article  CAS  PubMed  Google Scholar 

  105. Kirby KA. Lateral heel skive orthosis technique. Precision Intricast newsletter. Payson, AZ: Precision Intricast, Inc.; September 2004.

    Google Scholar 

  106. Nigg BM. The assessment of loads acting on the locomotor system in running and other sports activities. Semin Orthop. 1988;3(4):197–206.

    Google Scholar 

  107. Nigg BM, Bobbert M. On the potential of various approaches in load analysis to reduce the frequency of sports injuries. J Biomech. 1990;23:3–12.

    Article  PubMed  Google Scholar 

  108. Morlock M, Nigg BM. Theoretical consideration and practical results on the influence of the representation of the foot for the estimation of internal forces with models. Clin Biomech. 1991;6:3–13.

    Article  CAS  Google Scholar 

  109. McPoil TG, Hunt GC. Evaluation and management of foot and ankle disorders: present problems and future directions. J Orthop Sports Phys Ther. 1995;21:381–8.

    Article  CAS  PubMed  Google Scholar 

  110. Fuller EA. Computerized gait evaluation. In: Valmassy RL, editor. Clinical biomechanics of the lower extremities. St. Louis: Mosby-Year Book; 1996. p. 179–205.

    Google Scholar 

  111. Fuller EA. Center of pressure and its theoretical relationship to foot pathology. J Am Podiatr Med Assoc. 1999;89(6):278–91.

    Article  CAS  PubMed  Google Scholar 

  112. Fuller EA: Reinventing biomechanics. Podiatry Today. December 2000;13(3).

    Google Scholar 

  113. Fuller EA, Kirby KA. Subtalar joint equilibrium and tissue stress approach to biomechanical therapy of the foot and lower extremity. In: Albert SF, Curran SA, editors. Biomechanics of the lower extremity: theory and practice, vol. 1. Denver: Bipedmed LLC; 2013. p. 205–64.

    Google Scholar 

  114. Kirby KA. Are Root biomechanics dying? Podiatry Today. 2009;22(4).

    Google Scholar 

  115. Kirby KA. Has tissue stress theory supplanted Root theory? Podiatry Today. 2015;34(4):36–44.

    Google Scholar 

  116. Nigg BM, Nurse MA, Stefanyshyn DJ. Shoe inserts and orthotics for sport and physical activities. Med Sci Sports Exerc. 1999;31(7 Suppl):S421–8.

    Article  CAS  PubMed  Google Scholar 

  117. Nigg BM. The role of impact forces and foot pronation: a new paradigm. Clin J Sport Med. 2001;11:2–9.

    Article  CAS  PubMed  Google Scholar 

  118. Nigg BM, Baltich J, Hoerzer S, Enders H. Running shoes and running injuries: mythbusting and a proposal for two new paradigms: ‘preferred movement path’ and ‘comfort filter’. Br J Sports Med. 2015. doi:10.1136/bjsports-2015-095054.

  119. Payne CB. The past, present, and future of podiatric biomechanics. J Am Podiatr Med Assoc. 1998;88:53–63.

    Article  CAS  PubMed  Google Scholar 

  120. Bates BT, Osternig LR, Mason B, James LS. Foot orthotic devices to modify selected aspects of lower extremity mechanics. Am J Sports Med. 1979;7:328–31.

    Article  Google Scholar 

  121. Smith LS, Clarke TE, Hamill CL, Santopietro F. The effects of soft and semi-rigid orthoses upon rearfoot movement in running. J Am Podiatr Med Assoc. 1986;76:227–32.

    Article  CAS  PubMed  Google Scholar 

  122. Novick A, Kelley DL. Position and movement changes of the foot with orthotic intervention during loading response of gait. J Orthop Sports Phys Ther. 1990;11:301–12.

    Article  CAS  PubMed  Google Scholar 

  123. McCulloch MU, Brunt D, Linden DV. The effect of foot orthotics and gait velocity on lower limb kinematics and temporal events of stance. J Orthop Sports Phys Ther. 1993;17:2–10.

    Article  PubMed  Google Scholar 

  124. Butler RJ, McClay-Davis IS, Laughton CM, Hughes M. Dual-function foot orthosis: effect on shock and control of rearfoot motion. Foot Ankle Int. 2003;24:410–4.

    Article  PubMed  Google Scholar 

  125. Laughton CA, McClay-Davis IS, Hamill J. Effect of strike pattern and orthotic intervention on tibial shock during running. J Appl Biomech. 2003;19:153–16.

    Article  Google Scholar 

  126. Mundermann A, Nigg BM, Humble RN, Stefanyshyn DJ. Foot orthoses affect lower extremity kinematics and kinetics during running. Clin Biomech. 2003;18:254–62.

    Article  Google Scholar 

  127. Williams DS, McClay-Davis I, Baitch SP. Effect of inverted orthoses on lower extremity mechanics in runners. Med Sci Sports Exerc. 2003;35:2060–8.

    Article  PubMed  Google Scholar 

  128. MacLean CL, Hamill J. Short and long-term influence of a custom foot orthotic intervention on lower extremity dynamics in injured runners. Annual ISB meeting, Cleveland, September 2005.

    Google Scholar 

  129. Eng JJ, Pierrynowski MR. The effect of soft foot orthotics on three-dimensional lower-limb kinematics during walking and running. Phys Ther. 1994;74:836–44.

    Article  CAS  PubMed  Google Scholar 

  130. Johanson MA, Donatelli R, Wooden MJ, Andrew PD, Cummings GS. Effects of three different posting methods on controlling abnormal subtalar pronation. Phys Ther. 1994;74:149–58.

    Article  CAS  PubMed  Google Scholar 

  131. Fong DTP, Lam MH, Lao MLM, et al. Effect of medial arch-heel support in inserts on reducing ankle eversion: a biomechanical study. J Orthop Surg Res. 2008;3:7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  132. MacLean CL, Davis IS, Hamill J. Short and long-term influences of a custom foot orthotic intervention on lower extremity dynamics. Clin J Sport Med. 2008;18:338–43.

    PubMed  Google Scholar 

  133. Nester CJ, Hutchins S, Bowker P. Effect of foot orthoses on rearfoot complex kinematics during walking gait. Foot Ankle Int. 2001;22:133–9.

    Article  CAS  PubMed  Google Scholar 

  134. Nester CJ, Van Der Linden ML, Bowker P. Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture. 2003;17:180–7.

    Article  CAS  PubMed  Google Scholar 

  135. MacLean C, Davis IM, Hamill J. Influence of a custom foot intervention on lower extremity dynamics in healthy runners. Clin Biomech. 2006;21:621–30.

    Article  Google Scholar 

  136. Nawoczenski DA, Cook TM, Saltzman CL. The effect of foot orthotics on three-dimensional kinematics of the leg and rearfoot during running. J Orthop Sports Phys Ther. 1995;21: 317–27.

    Article  CAS  PubMed  Google Scholar 

  137. Stackhouse CL, Davis IM, Hamill J. Orthotic intervention in forefoot and rearfoot strike running patterns. Clin Biomech. 2004;19:64–70.

    Article  Google Scholar 

  138. Woodburn J, Helliwell PS, Barker S. Changes in 3D joint kinematics support the continuous use of orthoses in the management of painful rearfoot deformity in rheumatoid arthritis. J Rheumatol. 2003;30:2356–64.

    PubMed  Google Scholar 

  139. Nawoczenski DA, Ludewig PM. Electromyographic effects of foot orthotics on selected lower extremity muscles during running. Arch Phys Med Rehabil. 1999;80:540–4.

    Article  CAS  PubMed  Google Scholar 

  140. Tomaro J, Burdett RG. The effects of foot orthotics on the EMG activity of selected leg muscles during gait. J Orthop Sports Phys Ther. 1993;18:532–6.

    Article  CAS  PubMed  Google Scholar 

  141. Mundermann A, Wakeling JM, Nigg BM, et al. Foot orthoses affect frequency components of muscle activity in the lower extremity. Gait Posture. 2006;23:295–302.

    Article  PubMed  Google Scholar 

  142. Mundermann A, Nigg BM, Humble RN, Stefanyshyn DJ. Orthotic comfort is related to kinematics, kinetics, and EMG in recreational runners. Med Sci Sports Exerc. 2003;35:1710–9.

    Article  PubMed  Google Scholar 

  143. Dedieu P, Drigeard C, Gjini L, Maso FD, Zanone PG. Effects of foot orthoses on the temporal pattern of muscular activity during walking. Clin Biomech. 2013;28(7):820–4.

    Article  Google Scholar 

  144. Cheung JT, Zhang M. A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil. 2005;86:353–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Kirby D.P.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kirby, K.A. (2017). Evolution of Foot Orthoses in Sports. In: Werd, M., Knight, E., Langer, P. (eds) Athletic Footwear and Orthoses in Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-52136-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52136-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52134-3

  • Online ISBN: 978-3-319-52136-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics