Skip to main content

Thermo-mechanical Properties of Copolymer/Clay Nanocomposites: A Comparative Study of Production Method by In-situ and Solution Mixture

  • Conference paper
  • First Online:
Proceedings of the 3rd Pan American Materials Congress

Abstract

The field of polymer/clay nanocomposites is a new route for preparing polymers with enhance properties like higher modulus, thermal stability, better barrier properties, chemical resistance and electrical conductivity. In this work, nanoclay montmorillonite (MMT) was incorporated as reinforcement to a copolymer matrix, containing 0, 5% and 10 wt% of nanoclay. Two different processes were used to prepare the nanocomposites: (a) via in-situ (MMT-IN) and the (b) solution mixing (MMT-B). These nanocomposites show an increase in their glass transition temperature, Tg, studied by differential scanning calorimetry (DSC), and also a rise by an order of magnitude in the Young’s modulus for both series. On the other hand, the study of thermogravimetric analysis (TGA) for the two series IN and B with addition of montmorillonite clay nanoparticles showed a decreasing behavior in thermal decomposition temperatures, Tdec, relative to the neat copolymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gao, F. (2004). Clay/polymer composites the history. Materials Today, 7(11), 50–55.

    Article  Google Scholar 

  2. Tong, X., Zhao, H., Tang, T., Feng, Z., & Huang, B. (2002). Preparation and characterization of poly(ethyl acrylate)/bentonite nanocomposites by in situ emulsion polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 40, 1706–1711.

    Article  Google Scholar 

  3. Alexandre, B., Langevin, D., Mederic, P., Aubry, T., Counderc, H., Nguyen, Q. T., et al. (2009). “Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes”: Structure and volume fraction effects. Journal of Membrane Science, 328, 186–204.

    Article  Google Scholar 

  4. Zha, W., Han, C. D., Moon, H. C., Han, S. H., Lee, D. H., & Kim, J. K. (2010). “Exfoliation of organoclay nanocomposites based on polystyrene-block-polyisoprene-block-poly(2 vinylpyridine) copolymer”: Solution blending versus melt blending. Polymer, 51, 936–952.

    Article  Google Scholar 

  5. Madaleno, L., Schjødt-Thomsen, J., & Pinto, J. C. (2010). Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending þ melt compounding. Composite Science and Technology, 70, 804–814.

    Article  Google Scholar 

  6. Lee, J. L., Zeng, C., Cia, X., Han, X., Shen, J., & Xu, G. (2005). Polymer nanocomposite foams. Composite Science and Technology, 65, 2344–2363.

    Article  Google Scholar 

  7. Zulfiqar, S., Ahmad, Z., Ishaq, M., & Sarwer, M. I. (2009). Aromatic–aliphatic polyamide/montmorillonite clay composite materials; synthesis, nanostructure and properties. Materials Science and Engineering A, 525, 30–36.

    Article  Google Scholar 

  8. Soundararajah, Q. Y., Karunaratne, B. S. B., & Rajapakse, R. M. G. (2010). Mechanical properties of poly(vinyl alcohol) montmorillonite nanocomposites. Journal of Composite Materials, 44, 303.

    Article  Google Scholar 

  9. Covarrubias-Gordillo, C. A., Farías-Cepeda, L., Pérez-Aguilar, N. V., & Hernández-Hernández, E. (2013). Nanocompuestos a base de polímeros dispersos y nanofibras de carbón. Revista Iberoamericana de Polímero, 14(3).

    Google Scholar 

  10. Dlamini, D. S., Mishra, S. B., Mishra, A. K., & Mamba, B. B. (2011). Comparative studies of the morphological and thermal properties of clay/polymer nanocomposites synthesized via melt blending and modified solution blending methods. Journal of Composite Materials, 45(21), 2211–2216.

    Article  Google Scholar 

  11. Cardoso, J., Romo-Uribe, A., & Flores, A. (2012). Nanostructure and viscoelasticity of layered silicate nanocomposite-electrolyte supports. Journal of Applied Polymer Science, 123, 944–955.

    Article  Google Scholar 

  12. Romero-Guzmán, M. E., Flores, O., Flores, A., Romo-Uribe, A., Alvarado-Tenorio, B., & Campillo, B. (2011). Cold-drawn induced microstructure in PVC-bentonite nanocomposites. Polymers for Advanced Technologies, 22, 836–846.

    Article  Google Scholar 

Download references

Acknowledgements

O. Hernández-Guerrero was supported by graduate scholarship from the Mexican Council for Science and Technology (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Hernandez-Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Hernandez-Guerrero, O., Castillo-Pérez, R., Hernández-Vargas, M.L., Campillo-Illanes, B.F. (2017). Thermo-mechanical Properties of Copolymer/Clay Nanocomposites: A Comparative Study of Production Method by In-situ and Solution Mixture. In: Meyers, M., et al. Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52132-9_46

Download citation

Publish with us

Policies and ethics