Skip to main content

Injectability Evaluation of Bone-Graft Substitutes Based on Carrageenan and Hydroxyapatite Nanorods

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The first injectable bone substitutes were introduced for orthopedic trauma applications since more than a decade, and over recent years the number of commercial products has dramatically increased. These substitutes can be injected into a fracture space for augmentation as an alternative to bone graft, or around a screw for augmentation if the bone is weak, so the injectability of the substitute must be optimum with a good behavior within and our of syringe. The aim of this work was to study the injectability of substitutes based on carrageenan CG with 1, 1.5, 2.5 and 60 wt% hydroxyapatite HA nanorods. Initially carrageenan and hydroxyapatite were characterized and then injectability tests were performed with the syringe between the compression plates of a testing machine. The material also was characterized by scanning electron microscopy. The results revealed that none of the samples had phases separation and they did not exceed 300 N of force (97.08, 107.84 and 149 N to each material), that the injectability was 95.71, 93.69 and 90.63% and the CG was a good vehicle for HA nanorods. Therefore, the substitutes are adequate for manual handling.

This is a preview of subscription content, log in via an institution.

References

  1. Cui, X., Zhang, Y., Wang, H., Gu, Y., Li, L., Zhou, J., et al. (2016). An injectable borate bioactive glass cement for bone repair: Preparation, bioactivity and setting mechanism. Journal of Non-Crystalline Solids, 432, 150.

    Article  Google Scholar 

  2. Morais, D. S., Rodrigues, M. A., Silva, T. I., Lopes, M. A., Santos, M., Santos, J. D., et al. (2013). Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes. Carbohydrate polymers, 95, 134.

    Google Scholar 

  3. Colon, D. A., Yoon, B. J. V., Russell, T. A., Cammisa, F. P., & Abjornson, C. (2015). Assessment of the injection behavior of commercially available bone BSMs for Subchondroplasty® procedures. The Knee, 22, 597.

    Article  Google Scholar 

  4. Dorati, R., Colonna, C., Genta, I., De Trizio, A., Modena, T., Klöss, H., et al. (2015). In vitro characterization of an injectable in situ forming composite system for bone reconstruction. Polymer Degradation and Stability, 119, 151.

    Google Scholar 

  5. Tulyaganov, D. U., Reddy, A. A., Siegel, R., Ionescu, E., Riedel, R., & Ferreira, J. M. F. (2015). Synthesis and in vitro bioactivity assessment of injectable bioglass−organic pastes for bone tissue repair. Ceramics International.

    Google Scholar 

  6. Song, H. Y., Rahman, A. E., & Lee, B. T. (2009). Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. Journal of Materials Science: Materials in Medicine, 20, 935.

    Google Scholar 

  7. Liu, W., Zhang, J., Rethore, G., Khairoun, K., Pilet, P., Tancret, F., et al. (2014). A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomaterialia, 10, 3335.

    Article  Google Scholar 

  8. Neves, N., Campos, B. B., Almeida, I. F., Costa, P. C., Cabral, A. T., Barbosa, M. A., et al. (2016). Strontium-rich injectable hybrid system for bone regeneration. Materials Science and Engineering: C, 59, 818.

    Google Scholar 

  9. Liu, W., Zhang, J., Weiss, P., Tancret, F., & Bouler, J. M. (2013). The influence of different cellulose ethers on both the handling and mechanical properties of calcium phosphate cements for bone substitution. Acta Biomaterialia, 9, 5740.

    Article  Google Scholar 

  10. Jin, X., Zhuang, J., Zhang, Z., Guo, H., & Tan, J. (2015). Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. Journal of Colloid and Interface Science, 443, 125.

    Article  Google Scholar 

  11. Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental Materials, 26, 471.

    Article  Google Scholar 

  12. Prajapati, V. D., Maheriya, P. M., Jani, G. K., & Solanki, H. K. (2014). Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydrate Polymers, 105, 97.

    Article  Google Scholar 

  13. Li, L., Ni, R., Shao, Y., & Mao, S. (2014). Carrageenan and its applications in drug delivery. Carbohydrate Polymers, 103, 1.

    Article  Google Scholar 

  14. Campo, V. L., Kawano, D. F., Da Silva, D. B., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydrate Polymers, 77, 167.

    Article  Google Scholar 

  15. Bohner, M., & Baroud, G. (2005). Injectability of calcium phosphate pastes. Biomaterials, 26, 1553.

    Article  Google Scholar 

  16. Zhang, J., Liu, W., Gauthier, O., Sourice, S., Pilet, P., Rethore, G., et al. (2016). A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomaterialia, 31, 326.

    Article  Google Scholar 

  17. Prado-Fernández, J., Rodrıguez-Vázquez, J. A., Tojo, E., & Andrade, J. M. (2003). Quantitation of κ-, ι-and λ-carrageenans by mid-infrared spectroscopy and PLS regression. Analytica Chimica Acta, 480, 23.

    Google Scholar 

  18. Gómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25, 1514.

    Article  Google Scholar 

  19. Chang, M. C., & Tanaka, J. (2002). FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 23, 4811.

    Article  Google Scholar 

  20. Mansur, H. S., Sadahira, C. M., Souza, A. N., & Mansur, A. A. P. (2008). FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28, 539.

    Article  Google Scholar 

  21. Lin, K., Chang, J., Cheng, R., & Ruan, M. (2007). Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Materials Letters, 61, 1683.

    Article  Google Scholar 

  22. Jiménez, E. B. M. (2010). Espumas Inyectables de Hidroxiapatita Obtenidas Por El Método de Espumado de La Fase Líquida de Un Cemento de Fosfato Tricálcico Alfa, Universidad Politécnica de Cataluña.

    Google Scholar 

  23. Navarro, M. E. (2005). Desarrollo Y Caracterización de Materiales Biodegradables Para Regeneración Ósea, Universidad Politécnica de Cataluña.

    Google Scholar 

  24. Swain, S. K., & Sarkar, D. (2011). A comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods. Ceramic International, 37, 2927.

    Article  Google Scholar 

  25. Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). A comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods. Acta Biomaterialia, 9, 7591.

    Article  Google Scholar 

  26. Tan, J., Chen, M., & Xia, J. (2009). Water-dispersible hydroxyapatite nanorods synthesized by a facile method. Applied Surface Science, 255, 8774.

    Article  Google Scholar 

  27. Liu, H., Li, H., Cheng, W., Yang, Y., Zhu, M., & Zhou, C. (2006). Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomaterialia, 2, 557.

    Google Scholar 

  28. Krebs, J., Ferguson, S. J., Bohner, M., Baroud, G., Steffen, T., & Heini, P. F. (2005). Clinical measurements of cement injection pressure during vertebroplasty. Spine, 30, E118 (Phila. Pa. 1976).

    Google Scholar 

Download references

Acknowledgements

The authors are thankful with Biomaterials Research Group and Colciencias (2016-257 project) for providing the necessary reagents and studies during the development of this project, also they wish to thank to Diego Giraldo from GIPIMME Research Group of University of Antioquia for allowing the use of mechanical testing machine.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

González, J.I., Ossa, C.P.O. (2017). Injectability Evaluation of Bone-Graft Substitutes Based on Carrageenan and Hydroxyapatite Nanorods. In: Meyers, M., et al. Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52132-9_4

Download citation

Publish with us

Policies and ethics