Skip to main content

Effects of Dialium guineense Based Zinc Nanoparticle Material on the Inhibition of Microbes Inducing Microbiologically Influenced Corrosion

  • Conference paper
  • First Online:
Proceedings of the 3rd Pan American Materials Congress

Abstract

This paper investigates the effects of Dialium guineense based zinc nanoparticle material on the inhibition of microbes inducing microbiologically influenced corrosion (MIC) in metals. Extract of leaf from the natural plant were used as precursor for zinc nanoparticle material, which was characterized by scanning electron microscopy and energy dispersive spectroscopy (SEM + EDS) instrument. Sensitivity of the developed zinc bio-nanoparticle material from this on different strains of microbes that are known to induce microbiologically influenced corrosion, in metallic materials, was then studied and compared with that obtained from a commercial antibiotic employed as control. Results showed that the biomaterial capped nanoparticle exhibited inhibited growth of the studied different MIC inducing microbes. Zones of inhibition, the sensitivity measure of the biosynthesized material against the microbial strains either surpassed or compared well with the zones of inhibition from the commercial antibiotic (control). These results engender implication on the prospects of the zinc bio-nanoparticle usages in corrosion inhibition and protection system for metals in microbial corrosion influencing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Akpan, G. U., & Iliyasu, M. (2015). Fungal populations inhabiting biofilms of corroded oil pipelines in the Niger Delta region of Nigeria. Sky Journal of Microbiology Research, 3, 36–40.

    Google Scholar 

  2. Akpan, G. U., Abah, G., & Akpan, B. D. (2013). Correlation between microbial populations isolated from biofilms of oil pipelines and corrosion rates. The International Journal of Engineering and Science, 2, 39–45.

    Google Scholar 

  3. Babu, B. R., Maruthamuthu, S., Rajasekar, A., Muthukumar, N., & Palaniswamy, N. (2006). Microbiologically influenced corrosion in dairy effluent. International Journal of Environmental Science and Technology, 3, 159–166.

    Article  Google Scholar 

  4. Adesina, A. Y., Aliyu, I. K., & AI-Abbas, F. M. (2015). Microbiologically influenced corrosion (MIC) challenges in unconventional gas fields. In CORROSION 2015. Houston, TX: NACE International, Paper No. 5725.

    Google Scholar 

  5. NACE International. (2016). International measures of prevention, application, and economics of corrosion technologies (IMPACT) study. Houston, TX: NACE International.

    Google Scholar 

  6. Schmitt, G. (2009). Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control. World Corrosion Organization.

    Google Scholar 

  7. Lin, J., & Ballim, R. (2012). Biocorrosion control: Current strategies and promising alternatives. African Journal of Biotechnology, 11, 15736–15747.

    Article  Google Scholar 

  8. Videla, H. A., & Herrera, L. K. (2005). Microbiologically influenced corrosion: Looking to the future. International Microbiology, 8, 169–180.

    Google Scholar 

  9. Kanyanga, C. R., Munduku, K. C., Ehata, T. M., Lumpu, N. S., Maya, M. B., Manienga, K., et al. (2014). Antibacterial and antifungal screening of extracts from six medicinal plants collected in Kinshasa-Democratic Republic of Congo against clinical isolate pathogens. Journal of Pharmacognosy and Phytotherapy, 6, 24–32.

    Article  Google Scholar 

  10. Okere, O. S., Sangodele, J. O., Adams, M. D., Ogunwole, E., & Shafe, M. O. (2014). Antibacterial and antifungal activity of methanolic leaf extract of Allium sativum on selected pathogenic strains. International Journal of Tropical Disease & Health, 4, 1146–1152.

    Article  Google Scholar 

  11. Kavitha, K. S., & Satish, S. (2013). Evaluation of antimicrobial and antioxidant activities from Toona ciliata Roemer. Journal of Analytical Science and Technology, 4, 1–7. doi:10.1186/2093-3371-4-23

  12. Mahesh, B., & Satish, S. (2008). Antimicrobial activity of some important medicinal plant against plant and human pathogens. World Journal of Agricultural Sciences, 4, 839–843.

    Google Scholar 

  13. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2016). Anticorrosion performance of Anthocleista djalonensis on steel-reinforced concrete in a sulphuric-acid medium. HKIE Transactions, 26, 138–149. doi:10.1080/1023697X.2016.1201437.

    Article  Google Scholar 

  14. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2016). Total-corrosion effects of Anthocleista djalonensis and Na2Cr2O7 on steel-rebar in H2SO4: Sustainable corrosion-protection prospects in microbial/industrial environment. In: R. E. Kirchain, B. Blanpain, C. Meskers, E. Olivetti, D. Apelian, J. Howarter, A. Kvithyld, B. Mishra, N. R. Neelameggham, & J. Spangenberger (Eds.), REWAS 2016: Towards materials resource sustainability (pp. 187–192). Cham, Switzerland: Springer. doi:10.1007/978-3-319-48768-7_27

  15. Okeniyi, J. O., Omotosho, O. A., Okeniyi, E. T., & Ogbiye, A. S. (2016). Anticorrosion performance of Solanum aethiopicum on steel-reinforcement in concrete immersed in industrial/microbial simulating-environment. In: TMS2016 Supplemental Proceedings (pp. 409–416). Cham, Switzerland: Springer. doi:10.1007/978-3-319-48254-5_49

  16. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2015). Evaluation and analyses of Rhizophora mangle L. leaf-extract corrosion-mechanism on reinforcing steel in concrete immersed in industrial/microbial simulating-environment. Journal of Applied Sciences, 15, 1083–1092.

    Article  Google Scholar 

  17. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2015). Inhibition of steel-rebar corrosion in industrial/microbial simulating-environment by Morinda lucida. Solid State Phenomena, 227, 281–285.

    Article  Google Scholar 

  18. Okeniyi, J. O., Loto, C. A., Popoola, A. P. I., Omotosho, O. A. (2015). Performance of Rhizophora mangle L. leaf-extract and sodium dichromate synergies on steel-reinforcement corrosion in 0.5 M H2SO4-immersed concrete. In: Corrosion 2015 Conference & Expo. Houston, TX: NACE International, Paper No. 5636.

    Google Scholar 

  19. Okeniyi, J. O., Omotosho, O. A., Ogunlana, O. O., Okeniyi, E. T., Owoeye, T. F., Ogbiye, A. S., et al. (2015). Investigating prospects of Phyllanthus muellerianus as eco-friendly/sustainable material for reducing concrete steel-reinforcement corrosion in industrial/microbial environment. Energy Procedia, 74, 1274–1281.

    Article  Google Scholar 

  20. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Corrosion inhibition performance of Rhizophora mangle L. bark-extract on concrete steel-reinforcement in industrial/microbial simulating-environment. International Journal of Electrochemical Science, 9, 4205–4216.

    Google Scholar 

  21. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Phyllanthus muellerianus on the corrosion of concrete steel-reinforcement in industrial/microbial simulating-environment. Portugaliae Electrochimica Acta, 32, 199–211.

    Article  Google Scholar 

  22. Loto, C. A., & Popoola, A. P. I. (2011). Effect of tobacco and kola tree extracts on the corrosion inhibition of mild steel in acid chloride. International Journal of Electrochemical Science, 6, 3264–3276.

    Google Scholar 

  23. Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19, 311–317.

    Article  Google Scholar 

  24. Naik, K., & Kowshik, M. (2014). Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating. Materials Science and Engineering C, 34, 62–68.

    Article  Google Scholar 

  25. Zarasvand, K. A., & Rai, V. R. (2016). Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxide nanoparticles. 3 Biotech, 6, 1–7.

    Google Scholar 

  26. Olajubu, F. A., Akpan, I., Ojo, D. A., & Oluwalana, S. A. (2012). Antimicrobial potential of Dialium guineense (Wild.) stem bark on some clinical isolates in Nigeria. International Journal of Applied and Basic Medical Research, 2, 58. http://dx.doi.org/10.4103%2F2229-516X.96811

  27. Navale, G. R., Thripuranthaka, M., Late, D. J., & Shinde, S. S. (2015). Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnology & Nanomedicine, 3, 2–9.

    Google Scholar 

  28. Reddy, L. S., Nisha, M. M., Joice, M., & Shilpa, P. N. (2014). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology, 52, 1388–1397.

    Article  Google Scholar 

  29. Meruvu, H., Vangalapati, M., Chippada, S. C., & Bammidi, S. R. (2011). Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan Journal of Chemistry, 4, 217–222.

    Google Scholar 

  30. Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of Applied Microbiology, 107, 1193–1201.

    Article  Google Scholar 

  31. Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassl, R., Goessler, W., et al. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. International Journal of Medical Microbiology, 305, 85–95.

    Article  Google Scholar 

  32. Azizi, S., Ahmad, M. B., Namvar, F., & Mohamad, R. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters, 116, 275–277.

    Article  Google Scholar 

  33. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Anthocleista djalonensis on steel-reinforcement corrosion in concrete immersed in saline/marine simulating-environment. Transactions of the Indian Institute of Metals, 67, 959–969.

    Article  Google Scholar 

  34. Okeniyi, J. O., Ogunlana, O. O., Ogunlana, O. E., Owoeye, T. F., & Okeniyi, E. T. (2015). Biochemical characterisation of the leaf of Morinda lucida: Prospects for environmentally-friendly steel-rebar corrosion-protection in aggressive medium. In: TMS2015 Supplemental Proceedings (pp. 635–644). Cham, Switzerland: Springer. doi:10.1007/978-3-319-48127-2_78

  35. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., et al. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.

    Google Scholar 

  36. Fuerbeth, W. (2015). New coatings for corrosion protection using nanoparticles or nanocapsules. In: CORROSION 2015. Houston, TX: NACE International, Paper No. 5554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Olusegun Okeniyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Okeniyi, J.O. et al. (2017). Effects of Dialium guineense Based Zinc Nanoparticle Material on the Inhibition of Microbes Inducing Microbiologically Influenced Corrosion. In: Meyers, M., et al. Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52132-9_3

Download citation

Publish with us

Policies and ethics