Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 694 Accesses

Abstract

Synthetic aperture radars (SAR) use microwaves (radio waves ranging from centimeters to meters in length) for imaging the surface of the Earth from airplanes or satellites. From the standpoint of mathematics, SAR imaging is an inverse problem of reconstructing certain characteristics of the target (an area of the Earth’s surface) from the information contained in the radio waves reflected off this target. In practice, SAR technology provides a most viable complement to the aerial or orbital photography in performing a broad variety of observation, monitoring, and surveillance tasks. Indeed, unlike the photography, SAR imaging can be done through clouds. SAR imaging can also be done during nighttime, because it is active. In other words, as opposed to photography that uses solar illumination, SAR actually emits the radio waves that illuminate the target and then constructs the image based on the scattered returns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The antenna size plays roughly the same role as the lens diameter in optical imaging.

  2. 2.

    Historical overview of the developments leading to SAR can be found, e.g., in [9, 10].

  3. 3.

    This is particularly true in the most typical case of the propagation through a nonideal medium, such as the inhomogeneous atmosphere or ionosphere.

  4. 4.

    See Chapter 2 for the detailed analysis.

  5. 5.

    Except for the standard Coulomb decay of the amplitude, which is inversely proportional to the distance from the antenna.

  6. 6.

    The type of imaging where the antenna emits and receives only one given linear polarization of the interrogating field.

  7. 7.

    This depends on how substantial the variation of the geomagnetic field \(\boldsymbol{H}_{0}\) may be along the path S at the region where the image is taken, see [20].

  8. 8.

    It is the difference between the TEC distributions for two successive data acquisitions.

  9. 9.

    The original ALOS is no longer operational, whereas ALOS-2 is currently in service.

  10. 10.

    Polarimetric SAR imaging exploits two independent (orthogonal) linear polarizations for both the transmitted and received signals.

  11. 11.

    In the conventional theory of SAR imaging, see Chapter 2, the quantity \(1 - n^{2}(\boldsymbol{z})\) defines the ground reflectivity function \(\nu (\boldsymbol{z})\) up to a multiplicative constant.

  12. 12.

    The imaging mode where the pulses are emitted and received by the same antenna.

Bibliography

  1. S.V. Tsynkov, On SAR imaging through the Earth’s ionosphere. SIAM J. Imaging Sci. 2 (1), 140–182 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.V. Tsynkov, On the use of start-stop approximation for spaceborne SAR imaging. SIAM J. Imaging Sci. 2 (2), 646–669 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. E.M. Smith, S.V. Tsynkov, Dual carrier probing for spaceborne SAR imaging. SIAM J. Imaging Sci. 4 (2), 501–542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Gilman, E. Smith, S. Tsynkov, A linearized inverse scattering problem for the polarized waves and anisotropic targets. Inverse Prob. 28 (8), 085009 (38 pp.) (2012)

    Google Scholar 

  5. M. Gilman, E. Smith, S. Tsynkov, Reduction of ionospheric distortions for spaceborne synthetic aperture radar with the help of image registration. Inverse Prob. 29 (5), 054005 (35 pp.) (2013)

    Google Scholar 

  6. M. Gilman, E. Smith, S. Tsynkov, Single-polarization SAR imaging in the presence of Faraday rotation. Inverse Prob. 30 (7), 075002 (27 pp.) (2014)

    Google Scholar 

  7. M. Gilman, S. Tsynkov, A mathematical model for SAR imaging beyond the first Born approximation. SIAM J. Imaging Sci. 8 (1), 186–225 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Cheney, B. Borden, Fundamentals of Radar Imaging. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 79 (SIAM, Philadelphia, 2009)

    Google Scholar 

  9. C.V. Jakowatz Jr., D.E. Wahl, P.H. Eichel, D.C. Ghiglia, P.A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach (Springer, New York, 1996)

    Book  Google Scholar 

  10. V.S. Ryaben’kii, The idea of using weak noise for the real-time control of strong noise suppression in a shielded subdomain. Doklady Math. 81 (1), 137–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. V.S. Ryaben’kii, Synchronous exploration for the control of real-time external noise suppression in a three-dimensional subdomain. Comput. Math. Math. Phys. 51 (10), 1777–1791 (2011)

    Article  MathSciNet  Google Scholar 

  12. V.S. Ryaben’kii, S.V. Tsynkov, A Theoretical Introduction to Numerical Analysis (Chapman & Hall/CRC, Boca Raton, FL, 2007)

    MATH  Google Scholar 

  13. B. Zitová, J. Flusser, Image registration methods: a survey. Image Vision Comput. 21 (11), 977–1000 (2003)

    Article  Google Scholar 

  14. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics. Elements of Random Fields, vol. 3 (Springer, Berlin, 1989). Translated from the second Russian edition by Alexander P. Repyev

    Google Scholar 

  15. V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas. International Series of Monographs on Electromagnetic Waves, vol. 7 (Pergamon Press, Oxford, 1964)

    Google Scholar 

  16. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics. Electrodynamics of Continuous Media, vol. 8 (Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press, Oxford, 1984). Translated from the second Russian edition by J.B. Sykes, J.S. Bell, M.J. Kearsley, Second Russian edition revised by Lifshits and L.P. Pitaevskii

    Google Scholar 

  17. E. Thébault, C.C. Finlay, C.D. Beggan, et al. International geomagnetic reference field: the 12th generation. Earth Planets Space 67 (1), 1–19 (2015)

    Article  Google Scholar 

  18. K. Davies, E.K. Smith, Ionospheric effects on satellite land mobile systems. IEEE Antenn. Propag. Mag. 44 (6), 24–31 (2002)

    Article  Google Scholar 

  19. M. van de Kamp, P.S. Cannon, M. Terkildsen, Effect of the ionosphere on defocusing of space-based radars. Radio Sci. 44 (1), RS1003 (2009)

    Google Scholar 

  20. B. Zhang, Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci. 51 (7), 972–988 (2016). 2015RS005916

    Google Scholar 

  21. P.A. Wright, S. Quegan, N.S. Wheadon, C. David Hall, Faraday rotation effects on L-band spaceborne SAR data. IEEE Trans. Geosci. Remote Sens. 41 (12), 2735–2744 (2003)

    Article  Google Scholar 

  22. J.C. Curlander, R.N. McDonough, Synthetic Aperture Radar. Systems and Signal Processing. Wiley Series in Remote Sensing (Wiley, New York, 1991)

    Google Scholar 

  23. F. Meyer, R. Bamler, N. Jakowski, T. Fritz, The potential of low-frequency SAR systems for mapping ionospheric TEC distributions. IEEE Geosci. Remote Sens. Lett. 3 (4), 560–564 (2006)

    Article  Google Scholar 

  24. R. Brcic, A. Parizzi, M. Eineder, R. Bamler, F. Meyer, Estimation and compensation of ionospheric delay for SAR interferometry, in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’10), Honolulu, Hawaii, July 2010 (IEEE), pp. 2908–2911

    Google Scholar 

  25. R. Brcic, A. Parizzi, M. Eineder, R. Bamler, F. Meyer, Ionospheric effects in SAR interferometry: an analysis and comparison of methods for their estimation, in Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’11), Vancouver, July 2011 (IEEE), pp. 1497–1500

    Google Scholar 

  26. R. Bürgmann, P.A. Rosen, E.J. Fielding, Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28 (1), 169–209 (2000)

    Article  Google Scholar 

  27. R.F. Hanssen, Radar Interferometry: Data Interpretation and Error Analysis. Remote Sensing and Digital Image Processing, vol. 2 (Kluwer Academic Publishers, New York, 2001)

    Google Scholar 

  28. M. Jehle, M. Rüegg, L. Zuberbühler, D. Small, E. Meier, Measurement of ionospheric Faraday rotation in simulated and real spaceborne SAR data. IEEE Trans. Geosci. Remote Sens. 47 (5), 1512–1523 (2009)

    Article  Google Scholar 

  29. X. Pi, A. Freeman, B. Chapman, P. Rosen, Z. Li, Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar. J. Geophys. Res. 116 (A4), 1–13 (2011)

    Article  Google Scholar 

  30. J.-S. Lee, E. Pottier, Polarimetric Radar Imaging from Basics to Applications. Optical Science and Engineering (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  31. W.B. Gail, Effect of Faraday rotation on polarimetric SAR. IEEE Trans. Aerospace Electron. Syst. 34 (1), 301–308 (1998)

    Article  Google Scholar 

  32. F.J. Meyer, J.B. Nicoll, Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data. IEEE Trans. Geosci. Remote Sens. 46 (10), 3076–3086 (2008)

    Article  Google Scholar 

  33. S. Quegan, M.R. Lomas, The impact of system effects on estimates of faraday rotation from synthetic aperture radar measurements. IEEE Trans. Geosci. Remote Sens. 53 (8), 4284–4298 (2015)

    Article  Google Scholar 

  34. G. Franceschetti, R. Lanari, Synthetic Aperture Radar Processing. Electronic Engineering Systems Series (CRC Press, Boca Raton, FL, 1999)

    Google Scholar 

  35. P.H. Eichel, C.V. Jakowatz Jr. Phase-gradient algorithm as an optimal estimator of the phase derivative. Optics Lett. 14, 1101–1103 (1989)

    Article  Google Scholar 

  36. D.E. Wahl, P.H. Eichel, D.C. Ghiglia, C.V. Jakowatz Jr., Phase gradient autofocus — a robust tool for high resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst. 30 (3), 827–835 (1994)

    Article  Google Scholar 

  37. L. Li, F. Li, Ionosphere tomography based on spaceborne SAR. Adv. Space Res. 42 (7), 1187–1193 (2008)

    Article  Google Scholar 

  38. K.E. Mattar, A.L. Gray. Reducing ionospheric electron density errors in satellite radar interferometry applications. Can. J. Remote Sens. 28 (4), 593–600 (2002)

    Article  Google Scholar 

  39. M. Jehle, O. Frey, D. Small, E. Meier, Measurement of ionospheric TEC in spaceborne SAR data. IEEE Trans. Geosci. Remote Sens. 48 (6), 2460–2468 (2010)

    Article  Google Scholar 

  40. H. Breit, T. Fritz, U. Balss, M. Lachaise, A. Niedermeier, M. Vonavka, TerraSAR-X SAR processing and products. IEEE Trans. Geosci. Remote Sens. 48 (2), 727–740 (2010)

    Article  Google Scholar 

  41. M. Eineder, C. Minet, P. Steigenberger, X. Cong, T. Fritz, Imaging geodesy — toward centimeter-level ranging accuracy with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 49 (2), 661–671 (2011)

    Article  Google Scholar 

  42. F. Meyer, A review of ionospheric effects in low-frequency SAR — Signals, correction methods, and performance requirements, in Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’10) (IEEE, 2010), pp. 29–32

    Google Scholar 

  43. A.C. Chen, H.A. Zebker, Reducing ionospheric effects in InSAR data using accurate coregistration. IEEE Trans. Geosci. Remote Sens. 52 (1), 60–70 (2014)

    Article  Google Scholar 

  44. J. Chen, H.A. Zebker, Ionospheric artifacts in simulataneous L-band InSAR and GPS observations. IEEE Trans. Geosci. Remote Sens. 50 (4), 1227–1239 (2012)

    Article  Google Scholar 

  45. F.J. Meyer, Quantifying ionosphere-induced image distortions in L-band SAR data using the ionospheric scintillation model WBMOD, in Proceedings of EUSAR 2014; 10th European Conference on Synthetic Aperture Radar (VDE, 2014), pp. 1–4

    Google Scholar 

  46. X. Pi, Ionospheric effects on spaceborne synthetic aperture radar and a new capability of imaging the ionosphere from space. Space Weather 13 (11), 737–741 (2015)

    Article  Google Scholar 

  47. J.C. Kirk Jr., Motion compensation for synthetic aperture radar. IEEE Trans. Aerospace Electron. Syst. AES-11 (3), 338–348 (1975)

    Article  Google Scholar 

  48. D.C. Munson Jr., R.L. Visentin, A signal processing view of strip-mapping synthetic aperture radar. IEEE Trans. Acoust. Speech Signal Process. 37 (12), 2131–2147 (1989)

    Article  Google Scholar 

  49. I.G. Cumming, F.H. Wong, Digital Processing of Synthetic Aperture Radar Data. Algorithms and Implementation (Artech House, Boston, 2005)

    Google Scholar 

  50. K. Ouchi, Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens. 5 (2), 716–807 (2013)

    Article  Google Scholar 

  51. M. Cheney, A mathematical tutorial on synthetic aperture radar. SIAM Rev. 4 3(2), 301–312 (electronic) (2001)

    Google Scholar 

  52. A.J. Devaney, Mathematical Foundations of Imaging, Tomography and Wavefield Inversion (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  53. J. Garnier, K. Sølna, A multiscale approach to synthetic aperture radar in dispersive random media. Inverse Prob. 29, 054006 (18 pp.) (2013)

    Google Scholar 

  54. K.G. Budden, The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  55. N. Blaunstein, E. Plohotniuc, Ionosphere and Applied Aspects of Radio Communication and Radar (CRC Press/Taylor & Francis, Boca Raton, FL, 2008)

    Book  Google Scholar 

  56. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1 (The MIT Press, Cambridge, MA, 1971)

    Google Scholar 

  57. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (The MIT Press, Cambridge, MA, 1975)

    Google Scholar 

  58. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics. Elements of Random Process Theory, vol. 1 (Springer, Berlin, 1987). Translated from the second Russian edition by Alexander P. Repyev

    Google Scholar 

  59. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics. Wave Propagation Through Random Media, vol. 4 (Springer, Berlin, 1989). Translated from the second Russian edition by Alexander P. Repyev

    Google Scholar 

  60. V.I. Tatarskii, Propagation of Waves in a Turbulent Medium (Dover Publications Inc., New York, 1968). Translated from the Russian by R. A. Silverman

    Google Scholar 

  61. J.-P. Fouque, J. Garnier, G. Papanicolaou, K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media. Stochastic Modelling and Applied Probability, vol. 56 (Springer, New York, 2007)

    Google Scholar 

  62. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics. The Classical Theory of Fields, vol. 2, 4th edn. (Pergamon Press, Oxford, 1975). Translated from the Russian by Morton Hamermesh

    Google Scholar 

  63. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  64. J.R. Huynen, Phenomenological theory of radar targets. PhD thesis, University of Technology, Delft, December 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gilman, M., Smith, E., Tsynkov, S. (2017). Introduction. In: Transionospheric Synthetic Aperture Imaging. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-52127-5_1

Download citation

Publish with us

Policies and ethics