Skip to main content

Magnetic Graphene Nanocomposites for Multifunctional Applications

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

Since its first isolation in 2004, graphene, a two-dimensional single layer of sp2-hybridized carbon sheet with hexagonal packed lattice structure, has been in the spotlight around the world. The unique and exceptional physicochemical properties, such as high thermal stability, high surface area, excellent recyclability, and, most importantly, on-demand surface engineering with a range of nanoscale structures, of graphene and its subtypes have triggered colossal scientific interest with the aim of transforming the global market for the construction of state-of-the-art composite materials. Among such materials, magnetic graphene nanocomposites, nanomaterials composed of inorganic magnetic constituents in the form of either particles or any varying shape embedded in graphene as hosting matrix, are of particular interest, and the scope of their usefulness has progressively matured in the past few years for contemporary yet wide technological applications, including, but not limited to, heterogeneous catalysis, enzyme mimics and biosensing, and molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  4. Geim AK, MacDonald AH (2007) Graphene: exploring carbon flatland. Phys Today 60: 35–41

    Google Scholar 

  5. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385–388

    Article  Google Scholar 

  6. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  7. Bolotin KI, Ghahari F, Shulman MD, Stormer HL, Kim P (2009) Observation of the fractional quantum Hall effect in graphene. Nature 462:196–199

    Article  Google Scholar 

  8. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  9. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308

    Article  Google Scholar 

  10. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  11. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  12. Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323:1705–1708

    Article  Google Scholar 

  13. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  14. Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561

    Article  Google Scholar 

  15. Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X (2011) Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136:4631–4640

    Article  Google Scholar 

  16. Chen F, Tao NJ (2009) Electron transport in single molecules: from benzene to graphene. Acc Chem Res 42:429–438

    Article  Google Scholar 

  17. Wan X, Huang Y, Chen Y (2012) Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc Chem Res 45:598–607

    Article  Google Scholar 

  18. Chen Y, Zhang B, Liu G, Zhuang X, Kang E-T (2012) Graphene and its derivatives: switching ON and OFF. Chem Soc Rev 41:4688–4707

    Article  Google Scholar 

  19. Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166

    Article  Google Scholar 

  20. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  Google Scholar 

  21. Guo CX, Ng SR, Khoo SY, Zheng X, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944–6951

    Article  Google Scholar 

  22. Li Y, Wen T, Xue C, Han Q, Wang Y, Hong J, Zhou X, Jiang H (2013) RGO LBL modified biomimetic electrochemical sensor for detection of Sildenafil in herbal sexual health products. Biosens Bioelectron 42:287–292

    Article  Google Scholar 

  23. Dreyer DR, Jia H-P, Bielawski CW (2010) Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem Int Ed Engl 49:6813–6816

    Google Scholar 

  24. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Cat Sci Technol 2:54–75

    Article  Google Scholar 

  25. Su C, Loh KP (2013) Carbocatalysts: graphene oxide and its derivatives. Acc Chem Res 46:2275–2285

    Article  Google Scholar 

  26. Garg B, Ling Y-C (2013) Versatilities of graphene-based catalysts in organic transformations. Green Mater 1:47–61

    Article  Google Scholar 

  27. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212

    Article  Google Scholar 

  28. Garg B, Bisht T, Ling Y-C (2014) Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules 19:14582–14614

    Article  Google Scholar 

  29. Shi S, Chen F, Ehlerding EB, Cai W (2014) Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug Chem. 25:1609–1619

    Article  Google Scholar 

  30. Zhang W, Guo ZY, Huang DQ, Liu ZM, Guo X, Zhong HQ (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32:8555–8561

    Article  Google Scholar 

  31. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy 40:948–979

    Article  Google Scholar 

  32. Fan X, Zhang G, Zhang F (2015) Multiple roles of graphene in heterogeneous catalysis. Chem Soc Rev 44:3023–3035

    Article  Google Scholar 

  33. Garg B, Bisht T, Ling Y-C (2015) Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules 20:14155–14190

    Article  Google Scholar 

  34. Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:3833–3842

    Article  Google Scholar 

  35. Yang K, Feng L, Hong H, Cai W, Liu Z (2013) Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc 8:2392–2403

    Article  Google Scholar 

  36. Su J, Cao M, Ren L, Hu C (2011) Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C 115:14469–14477

    Article  Google Scholar 

  37. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond A 149:249–259

    Article  Google Scholar 

  38. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  Google Scholar 

  39. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  Google Scholar 

  40. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472

    Article  Google Scholar 

  41. Hofmann U, Holst R (1939) Über die säurenatur und die methylierung von graphitoxyd. Ber Dtsch Chem Ges A/B 72:754–771

    Article  Google Scholar 

  42. Szabó T, Tombácz E, Illés E, Dékány I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–538

    Article  Google Scholar 

  43. Xue YH, Chen H, Yu DS, Wang SY, Yardeni M, Dai QB, Guo MM, Liu Y, Lu F, Qu J, Dai LM (2011) Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chem Commun 47:11689–11691

    Article  Google Scholar 

  44. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  45. Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv. 4:3823–3851

    Article  Google Scholar 

  46. Yusuf M, Elfghi FM, Zaidi SA, Abdullah EC, Khan MA (2015) Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview. RSC Adv 5:50392–50420

    Article  Google Scholar 

  47. Wang Z, Liu C-J (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293

    Article  Google Scholar 

  48. Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  Google Scholar 

  49. Zong PF, Wang SF, Zhao YL, Wang H, Pan H, He CH (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52

    Article  Google Scholar 

  50. Fan XJ, Jiao GZ, Zhao W, Jin PF, Li X (2013) Magnetic Fe3O4-graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale 5:1143–1152

    Article  Google Scholar 

  51. Li Y, Chu J, Qi JY, Li X (2011) An easy and novel approach for the decoration of graphene oxide by Fe3O4 nanoparticles. Appl Surf Sci 257:6059–6062

    Article  Google Scholar 

  52. Shen XP, Wu JL, Bai S, Zhou HJ (2010) One-pot solvothermal syntheses and magnetic properties of graphene-based magnetic nanocomposites. Alloys Compd 506:136–140

    Article  Google Scholar 

  53. Singh VK, Patra MK, Manoth M, Gowd GS, Vadera SR, Kumar N (2009) in situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Mater 24:147–152

    Article  Google Scholar 

  54. Yang S, Sun Y, Chen L, Hernandez Y, Feng X, Müllen K (2012) Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Sci Rep 2:427–433

    Google Scholar 

  55. Kamiya K, Hashimoto K, Nakanishi S (2012) Instantaneous one-pot synthesis of Fe-N-modified graphene as an efficient electrocatalyst for the oxygen reduction reaction in acidic solutions. Chem Commun 48:10213–10215

    Article  Google Scholar 

  56. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  Google Scholar 

  57. Zhang M, Qu B, Lei D, Chen Y, Yu X, Chen L, Li Q, Wang Y, Wang T (2012) A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties. J Mater Chem 22:3868–3874

    Article  Google Scholar 

  58. Karthikeyan K, Kalpana D, Amaresh S, Lee YS (2012) Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance. RSC Adv 2:12322–12328

    Article  Google Scholar 

  59. Yu SH, Conte DE, Baek S, Lee DC, Park SK, Lee KJ, Piao YZ, Sung YE, Pinna N (2013) Structure-properties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv Funct Mater 23:4293–4305

    Article  Google Scholar 

  60. Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Article  Google Scholar 

  61. Zhang WY, Zeng Y, Xu C, Tan HT, Liu WL, Zhu JX, Xiao N, Hng HH, Ma J, Hoster HE, Yazami R, Yan QY (2012) Fe2O3 nanocluster-decorated graphene as O2 electrode for high energy Li-O2 batteries. RSC Adv 2:8508–8514

    Article  Google Scholar 

  62. Schmitt OH (1969) Some interesting and useful biomimetic transform. In: Proceedings of third internatioanl biophysics congress, Boston, MA, 29 August–3 September 1969, p 297

    Google Scholar 

  63. Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945

    Article  Google Scholar 

  64. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  Google Scholar 

  65. Hennrich N, Cramer F (1965) Inclusion compounds. XVIII.1 the catalysis of the fission of pyrophosphates by cyclodextrin. A model reaction for the mechanism of enzymes. J Am Chem Soc 87:1121–1126

    Article  Google Scholar 

  66. Klotz IM, Royer GP, Scarpa IS (1971) Synthetic derivatives of polyethyleneimine with enzyme-like catalytic activity (synzymes). Proc Natl Acad Sci U S A 68:263–264

    Article  Google Scholar 

  67. Breslow R, Overman LE (1970) Artificial enzyme combing a metal catalytic group and a hydrophobic binding cavity. J Am Chem Soc 92:1075–1077

    Article  Google Scholar 

  68. Bhabak KP, Mugesh G (2010) Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43:1408–1419

    Article  Google Scholar 

  69. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105

    Article  Google Scholar 

  70. Friedle S, Reisner E, Lippard SJ (2010) Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem Soc Rev 39:2768–2779

    Article  Google Scholar 

  71. Sumner JB (1926) The isolation and crystallization of the enzyme urease. J Biol Chem 69:435–441

    Google Scholar 

  72. Breslow R (1972) Centenary lecture. Biomimetic chemistry. Chem Soc Rev 1:553–580

    Article  Google Scholar 

  73. Tabushi I (1982) Cyclodextrin catalysis as a model for enzyme action. Acc Chem Res 15:66–72

    Article  Google Scholar 

  74. Takagishi T, Klotz IM (1972) Macromolecule-small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages. Biopolymers 11:483–491

    Article  Google Scholar 

  75. Tramontano A, Janda KD, Lerner RA (1986) Catalytic antibodies. Science 234:1566–1570

    Article  Google Scholar 

  76. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    Article  Google Scholar 

  77. Cuevas F, Di Stefano S, Magrans JO, Prados P, Mandolini L, de Mendoza J (2000) Toward an artificial acetylcholinesterase. Chem A Eur J 6:3228–3234

    Article  Google Scholar 

  78. Kuah E, Toh S, Yee J, Ma Q, Gao Z (2016) Enzyme mimics: advances and applications. Chem A Eur J 22:8404–8430

    Article  Google Scholar 

  79. Ragg R, Tahir MN, Tremel W (2016) Solid go bio: inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem 2016:1906–1915

    Article  Google Scholar 

  80. Manea F, Houillon FB, Pasquato L, Scrimin P (2004) Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed Engl 43:6165–6169

    Article  Google Scholar 

  81. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  Google Scholar 

  82. He W, Wamer W, Xia Q, Yin J-J, Fu PP (2014) Enzyme-like activity of nanomaterials. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32:186–211

    Article  Google Scholar 

  83. Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3:41–60

    Article  Google Scholar 

  84. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) The catalytic activity of “naked” gold particles. Angew Chem Int Ed Engl 43:5812–5815

    Article  Google Scholar 

  85. Wan Y, Qi P, Zhang D, Wu J, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33:69–74

    Article  Google Scholar 

  86. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 37:1191–1202

    Article  Google Scholar 

  87. Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL (2008) A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29:117–128

    Article  Google Scholar 

  88. Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem A Eur J 16:3617–3621

    Article  Google Scholar 

  89. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210

    Article  Google Scholar 

  90. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Article  Google Scholar 

  91. Hamid M, Khalil-ur-Rehman (2009) Potential applications of peroxidases. Food Chem 115:1177–1186

    Google Scholar 

  92. Dong Y, Zhang H, Rahman ZU, Su L, Chen X, Hu J, Chen X (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4:3969–3976

    Article  Google Scholar 

  93. Hao J, Zhang Z, Yang W, Lu B, Ke X, Zhang B, Tang J (2013) in situ controllable growth of CoFe2O4 ferrite nanocubes on graphene for colorimetric detection of hydrogen peroxide. J Mater Chem A 1:4352–4357

    Article  Google Scholar 

  94. Xing Z, Tian J, Asiri AM, Qusti AH, Al-Youbi AO, Sun X (2014) Two-dimensional hybrid mesoporous Fe2O3-graphene nanostructures: a highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens Bioelectron 52:452–457

    Article  Google Scholar 

  95. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  Google Scholar 

  96. Wang D, Li Y, Wang Q, Wang TJ (2012) Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. Solid State Electrochem. 16:2095–2102

    Article  Google Scholar 

  97. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254

    Article  Google Scholar 

  98. Tian J, Liu S, Luo Y, Sun X (2012) Fe(III)-based coordination polymernanoparticles: peroxidase-like catalytic activity and their application to hydrogen peroxide and glucose detection. Cat Sci Technol 2:432–436

    Article  Google Scholar 

  99. Kim M II, Kim MS, Woo MA, Ye Y, Kang KS, Lee J, Park HG (2014) Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene-oxidemagnetic-platinum nanohybrids. Nanoscale 6:1529–1536

    Article  Google Scholar 

  100. Xing Y (2004) Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J Phys Chem B 108:19255–19259

    Article  Google Scholar 

  101. Wang C, Daimon H, Sun S (2009) Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett 9:1493–1496

    Article  Google Scholar 

  102. Bi S, Zhao T, Jia X, He P (2014) Magnetic graphene oxide-supported hemin as peroxidase probe for sensitive detection of thiols in extracts of cancer cells. Biosens Bioelectron 57:110–116

    Article  Google Scholar 

  103. Qian J, Yang X, Jiang L, Zhu C, Mao H, Wang K (2014) Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sens Actuators B Chem 201:160–166

    Article  Google Scholar 

  104. Wang H, Li S, Si Y, Sun Z, Li S, Lin Y (2014) Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B 2:4442–4448

    Article  Google Scholar 

  105. Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353

    Article  Google Scholar 

  106. Hsu K, Lien CW, Lin CH, Chang HT, Huang CC (2014) Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Adv 4:37705–37713

    Article  Google Scholar 

  107. Wang S (2008) A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments 76:714–720

    Article  Google Scholar 

  108. Yun J-H, Ng YH, Wong RJ, Amal R (2013) Reduced graphene oxide: control of water miscibility, conductivity, and defects by photocatalysis. ChemCatChem 5:3060–3067

    Article  Google Scholar 

  109. Zheng X, Zhu Q, Song H, Zhao X, Yi T, Chen H, Chen X (2015) in situ synthesis of self-assembled three-dimensional graphene-magnetic palladium nanohybrids with dual-enzyme activity through one-pot strategy and its application in glucose probe. ACS Appl Mater Interfaces 7:3480–3491

    Google Scholar 

  110. Li L, Zeng C, Ai L, Jiang J (2015) Synthesis of reduced graphene oxide-iron nanoparticles with superior enzyme-mimetic activity for biosensing application. J Alloys Compd 639:470–477

    Article  Google Scholar 

  111. Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z (2015) A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7:8495–8502

    Article  Google Scholar 

  112. Long YJ, Li YF, Liu Y, Zheng J-J, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47:11939–11941

    Article  Google Scholar 

  113. Li S, Li H, Chen F, Liu J, Zhang H, Yang Z, Wang B (2016) Strong coupled palladium nanoparticles decorated on magnetic graphene nanosheets as enhanced peroxidase mimetics for colorimetric detection of H2O2. Dyes Pigments 125:64–71

    Article  Google Scholar 

  114. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–217

    Article  Google Scholar 

  115. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666

    Article  Google Scholar 

  116. Harmer MA, Farneth WE, Sun Q (1996) High surface area nafion resin/silica nanocomposites: a new class of solid acid catalyst. J Am Chem Soc 118:7708–7715

    Article  Google Scholar 

  117. Yin L, Liebscher J (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    Article  Google Scholar 

  118. Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  119. Miyaura N, Suzuki A (1979) Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J Chem Soc Chem Commun 19:866–867

    Article  Google Scholar 

  120. Mizoroki T, Mori K, Ozaki A (1971) Arylation of olefin with aryl iodide catalyzed by palladium. Bull Chem Soc Jpn 44:581–581

    Article  Google Scholar 

  121. Heck RF, Nolley JP Jr (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322

    Article  Google Scholar 

  122. Fanta PE (1974) The Ullmann synthesis of biaryls. Synthesis 1:9–21

    Article  Google Scholar 

  123. Corriu RJP, Masse JP (1972) Activation of Grignard reagents by transitionmetal complexes. A new and simple synthesis of trans-stilbenes and polyphenyls. J Chem Soc Chem Commun 3:113–204

    Google Scholar 

  124. Tamao K, Sumitani K, Kumada M (1972) Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J Am Chem Soc 94:4374–4376

    Article  Google Scholar 

  125. Hu J, Wang Y, Han M, Zhou Y, Jiang X, Sun P (2012) A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki-Miyaura reaction. Cat Sci Technol 2:2332–2340

    Article  Google Scholar 

  126. Dabiri M, Shariatipour M, Movahed SK, Bashiribod S (2014) Waterdispersible and magnetically separable gold nanoparticles supported on a magnetite/s-graphene nanocomposite and their catalytic application in the Ullmann coupling of aryl iodides in aqueous media. RSC Adv 4:39428–39434

    Article  Google Scholar 

  127. Dabiri M, Lehi NF, Movahed SK (2016) Fe3O4@rGO@Au@C composite with magnetic core and Au enwrapped in double-shelled carbon: an excellent catalyst in the reduction of nitroarenes and Suzuki-Miyaura cross-coupling. Catal Lett 146:1674–1686

    Article  Google Scholar 

  128. Ma’mani L, Miri S, Mahdavi M, Bahadorikhalili S, Lotfi E, Foroumadi A, Shafiee A (2014) Palladium catalyst supported on N-aminoguanidine functionalized magnetic graphene oxide as a robust water-tolerant and versatile nanocatalyst. RSC Adv 4:48613–48620

    Article  Google Scholar 

  129. Hoseini SJ, Heidari V, Nasrabadi H (2015) Magnetic Pd/Fe3O4/reducedgraphene oxide nanohybrid as anefficient and recoverable catalyst for Suzuki-Miyaura couplingreaction in water. J Mol Cat A Chem 396:90–95

    Article  Google Scholar 

  130. Elazab HA, Siamaki AR, Moussa S, Gupton BF, El-Shall MS (2015) Highly efficient and magnetically recyclable graphene-supported Pd/Fe3O4 nanoparticle catalysts for Suzuli and Heck cross-coupling reactions. Appl Catal A Gen 491:58–69

    Article  Google Scholar 

  131. Yao T, Wang H, Zuo Q, Wu J, Zhang X, Cui F, Cui T (2015) One step preparation of reduced graphene oxide/Pd-Fe3O4@polypyrrole composites and their application in catalysis. Chem Asian J 10:1940–1947

    Article  Google Scholar 

  132. Yao T, Zhang J, Zuo Q, Wang H, Wu J, Zhang X, Cui T (2016) A simple way to prepare reduced graphene oxide nanosheets/Fe2O3-Pd/N-doped carbon nanosheets and their application in catalysis. J Colloid Interface Sci 468:62–69

    Article  Google Scholar 

  133. Zhao X, Liu X (2015) A novel magnetic NiFe2O4@graphene-Pd multifunctional nanocomposite for practical catalytic application. RSC Adv 5:79548–79555

    Article  Google Scholar 

  134. Liu X, Zhao X, Zhu J, Xu J (2016) One-pot synthesis of magnetic palladium-NiFe2O4-graphene oxide composite: an efficient and recyclable catalyst for Heck reaction. Appl Organomet Chem 30:354–359

    Article  Google Scholar 

  135. Yang F, Feng A, Wang C, Dong S, Chi C, Jia X, Zhang L, Li Y (2016) Graphene oxide/carbon nanotubes-Fe3O4 supported Pd nanoparticles for hydrogenation of nitroarenes and C-H activation. RSC Adv 6:16911–16916

    Article  Google Scholar 

  136. Zhang M, Liu Y-H, Shang Z-R, Hu H-C, Zhang Z-H (2017) Supported molybdenum on graphene oxide/Fe3O4: an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal Commun 88:39–44

    Article  Google Scholar 

  137. Yang B, Tian Z, Wang B, Sun Z, Zhang L, Guo Y, Li H, Yan S (2015) Facile synthesis of Fe3O4-hierarchical-Mn3O4/graphene oxide as a synergistic catalyst for activation of peroxymonosulfate for degradation of organic pollutants. RSC Adv 5:20674–20683

    Article  Google Scholar 

  138. Cheng Z, Liao J, He B, Zhang F, Zhang F, Huang X, Zhou L (2015) One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain Chem Eng 3:1677–1685

    Article  Google Scholar 

  139. Lin K-YA, Hsu F-K, Lee W-D (2015) Magnetic cobalt-graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J Mater Chem A 3:9480–9490

    Article  Google Scholar 

  140. Du J, Bao J, Liu Y, Ling H, Zheng H, Kim SH, Dionysiou DD (2016) Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A. J Hazard Mater 320:150–159

    Article  Google Scholar 

  141. Gao L, Wang Y, Yan T, Cui L, Hu L, Yan L, Wei Q, Du B (2015) A novel magnetic polysaccharide-graphene oxide composite for removal of cationic dyes from aqueous solution. New J Chem 39:2908–2916

    Article  Google Scholar 

  142. Jiao T, Liu Y, Wu Y, Zhang Q, Yan X, Gao F, Bauer AJP, Liu J, Zeng T, Li B (2015) Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes. Sci Rep 5:12451–12460

    Article  Google Scholar 

  143. Zha J-W, Huang W, Wang S-J, Zhang D-L, Li RKY, Dang Z-M (2016) Difunctional graphene-Fe3O4 hybrid nanosheet/polydimethylsiloxane nanocomposites with high positive piezoresistive and superparamagnetism properties as flexible touch sensors. Adv Mater Interfaces 3:1500418–1500426

    Article  Google Scholar 

  144. Liu X, Zhao T, Cheng H, Zhu C, Li S, Cui P (2015) In-situ synthesis of nanomagnetites on poly(amidoamine)-modified graphite oxides and their novel catalytic performances towards the degradation of p-nitroaniline. Appl Surf Sci 327:226–232

    Article  Google Scholar 

  145. Hussain N, Gogoi P, Khare P, Das MR (2015) Nickel nanoparticles supported on reduced graphene oxide sheets: a phosphine free, magnetically recoverable and cost effective catalyst for Sonogashira cross-coupling reactions. RSC Adv 5:103105–103115

    Article  Google Scholar 

  146. Garg B, Sung C-H, Ling Y-C (2015) Graphene-based nanomaterials as molecular imaging agents. WIREs Nanomed Nanobiotechnol 7:737–758

    Article  Google Scholar 

  147. Yoo JM, Kang JH, Hong BH (2015) Graphene-based nanomaterials for versatile imaging studies. Chem Soc Rev 44:4835–4852

    Article  Google Scholar 

  148. Wang Y, Zhen SJ, Zhang Y, Li YF, Huang CZ (2011) Facile fabrication of metal nanoparticle/graphene oxide hybrids: a new strategy to directly illuminate graphene for optical imaging. J Phys Chem C 115:12815–12821

    Article  Google Scholar 

  149. Jaganathan H, Hugar DL, Ivanisevic A (2011) Examining MRI contrast in three-dimensional cell culture phantoms with DNA-templated nanoparticle chains. ACS Appl Mater Interfaces 3:1282–1288

    Article  Google Scholar 

  150. Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z (2011) Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl Mater Interfaces 3:4085–4091

    Article  Google Scholar 

  151. Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS (2009) Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  Google Scholar 

  152. Cong HP, He JJ, Lu Y, Yu SH (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6:169–173

    Article  Google Scholar 

  153. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24:1868–1872

    Article  Google Scholar 

  154. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu ZA (2012) Functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 3:199–212

    Article  Google Scholar 

  155. Narayanan TN, Gupta BK, Vithayathil SA, Aburto RR, Mani SA, Taha-Tijerina J, Xie B, Kaipparettu BA, Torti SV, Ajayan PM (2012) Hybrid 2D nanomaterials as dual-mode contrast agents in cellular imaging. Adv Mater 24:2992–2998

    Article  Google Scholar 

  156. Peng E, Choo ESG, Chandrasekharan P, Yang C-T, Ding J, Chuang K-H, Xue JM (2012) Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 8:3620–3630

    Article  Google Scholar 

  157. Chen M-L, Shen L-M, Chen S, Wang H, Chen X-W, Wang J-H (2013) in situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy. J Mater Chem B 1:2582–2589

    Article  Google Scholar 

  158. Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z (2013) Graphene-based magnetic palsmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34:4786–4793

    Article  Google Scholar 

  159. Chen Y, Guo F, Qiu Y, Hu H, Kulaots I, Walsh E, Hurt RH (2013) Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials. ACS Nano 7:3744–3753

    Article  Google Scholar 

  160. Shen J-M, Gao F-Y, Guan L-P, Su W, Yang Y-J, Li Q-R, Jin Z-C (2014) Graphene oxide-Fe3O4 nanocomposite for combination of dual-drug chemotherapy with photothermal therapy. RSC Adv 4:18473–18484

    Article  Google Scholar 

  161. Shen J-M, Huang G, Zhou X, Zou J, Yang Y, Chen Y-F, Men S-K (2014) Safety evaluation of graphene oxide-based magnetic nanocomposites as MRI contrast agents and drug delivery vehicles. RSC Adv 4:50464–50477

    Article  Google Scholar 

  162. Venkatesha N, Poojar P, Qurishi Y, Geethanath S, Srivastava C (2015) Graphene oxide-Fe3O4 nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging. J Appl Phys 117:154702–154709

    Article  Google Scholar 

  163. Zhu X, Zhang H, Huang H, Zhang Y, Hou L, Zhang Z (2015) Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors. Nanotechnology 26:365103–365114

    Article  Google Scholar 

  164. Chen W, Wen X, Zhen G, Zheng X (2015) Assembly of Fe3O4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery. RSC Adv 5:69307–69311

    Article  Google Scholar 

  165. Deng L, Li Q, Al-Rehili S, Omar H, Almalik A, Alshamsan A, Zhang J, Khashab NM (2016) Hybrid iron oxide-graphene oxide-polysaccharides microcapsule: a micro-matryoshka for on-demand drug release and antitumor therapy in vivo. ACS Appl Mater Interfaces 8:6859–6868

    Article  Google Scholar 

Download references

Acknowledgements

Dr. B. Garg is thankful to the Science & Engineering Research Board (SERB), New Delhi, Government of India (YSS/2015/002036) for financial support. B. Garg additionally thanks to all the publishers, especially, Royal Society of Chemistry (RSC) for giving permissions to reuse the figures as illustrated in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Garg, B., Bisht, T., Justin Thomas, K.R. (2017). Magnetic Graphene Nanocomposites for Multifunctional Applications. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_9

Download citation

Publish with us

Policies and ethics