Skip to main content

Role of Magnetic Nanoparticles in Providing Safe and Clean Water to Each Individual

  • Chapter
  • First Online:

Abstract

Recent statistics indicate that more people are dying from unsafe water annually than from all forms of violence combined, including war. Providing access to clean water has now become the first priority around the world. But natural water resources have been contaminated by industrial, agricultural, and harmful human activities, and water demands are increasing daily. One of the approaches being explored in many countries to tackle this challenge of increasing access to clean drinking water is the application of nanotechnology. The unique and novel properties of nanoparticles make them well suited for treating water. Nanotechnology offers an opportunity to refine and optimize current techniques and to provide new and novel methods of purifying water. Among them, magnetic nanomaterials have received much attention due to their great biocompatibility, excellent adsorption, and fast separation properties. In this chapter we aim to present all aspects and roles of magnetic nanoparticles (MNPs) in water purification as well as treatment. The chapter covers both the pros and cons of MNPs in water treatment and concludes with recent investigations of the issue of nanotoxicity and its implications for the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thatai S, Khurana P, Boken J, Prasad S, Kumar D (2014) Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J 116:62–76

    Article  Google Scholar 

  2. WHO (2014) Progress on drinking water and sanitation. http://www.who.int/water_sanitation_health/publications/2014/jmp-report/en/

  3. Fawell J, Nieuwenhuijsen M-J (2003) Contaminants in drinking water. Br Med Bull 68: 199–208

    Article  Google Scholar 

  4. Yapsakli K, Mertoglub B, Ferhan C (2010) Identification of nitrifiers and nitrification performance in drinking water biological activated carbon (BAC) filtration. Process Biochem 45:1543–1549

    Article  Google Scholar 

  5. Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106

    Article  Google Scholar 

  6. Yang C, Qian Y, Zhang L, Feng J (2006) Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification waste water. Chem Eng J 117:179–185

    Article  Google Scholar 

  7. Bukhari AA (2008) Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater. Bioresour Technol 99: 914–921

    Article  Google Scholar 

  8. Fu F, Dionysiou DD, Liu H (2014a) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  Google Scholar 

  9. Qu X, Alvarez P-JJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  Google Scholar 

  10. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012a) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  Google Scholar 

  11. Ambashta RD, Sillanpaa M (2010a) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  Google Scholar 

  12. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  13. Wu T, Pan H, Chen R, Luo D, Li Y, Wang L (2016) Preparation and properties of magnetic Fe3O4 hollow spheres based magnetic-fluorescent nanoparticles. J Alloys Compd 689:107–113

    Article  Google Scholar 

  14. Rishton A, Lu Y, Altman RA, Marley AC, Bian Hahnes C, Viswanathan R, Xiao G, Gallagher WJ, Parkin SSP (1997) Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron Eng 35:249–252

    Article  Google Scholar 

  15. Mathur S, Barth S, Werner U, Hernandez-Ramirez F, Romano-Rodriguez A (2008) Chemical vapor growth of one-dimensional magnetite nanostructures. Adv Mater 20:1550–1554

    Article  Google Scholar 

  16. Itoh H, Sugimoto TJ (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particle. J Colloid Interface Sci 265:283–295

    Article  Google Scholar 

  17. Vereda F, Rodríguez-González B, de Vicente J, Hidalgo-Álvarez RJ (2008) Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe(OH)2. J Colloid Interface Sci 318:520–524

    Article  Google Scholar 

  18. Estévez M, Vargas S, Castaño VM, Rodríguez JR, Lobland HEH, Brostow W (2007) Novel wear resistant and low toxicity dental obturation materials. Mater Lett 61:3025–3029

    Article  Google Scholar 

  19. Chen F, Gao Q, Hong G, Ni J (2008) Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J Magn Magn Mater 320:1775–1780

    Article  Google Scholar 

  20. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625–4633

    Article  Google Scholar 

  21. Cabrera L, Gutierrez S, Menendes N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441

    Article  Google Scholar 

  22. Strobel R, Pratsinis SE (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Technol 20:190–194

    Article  Google Scholar 

  23. Enomoto N, Akagi J, Nakagawa Z (1996) Sonochemical powder processing of iron hydroxides. Ultrason Sonochem 3:97–103

    Article  Google Scholar 

  24. Lam UT, Mammucari R, Suzuki K, Foster NR (2008) Processing of iron oxide nanoparticles by supercritical fluids. Ind Eng Chem Res 47:599–614

    Article  Google Scholar 

  25. Liu JF, Lua MF, Chaia P, Fua L, Wang ZL, Cao XQ, Meng J (2007) The magnetic and structural properties of hydrothermal-synthesized single-crystal Sn1−xFexO2 nanograins. J Magn Magn Mater. 317:1–7

    Article  Google Scholar 

  26. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  Google Scholar 

  27. Sadeghia S, Azhdaria H, Arabib H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208–216

    Article  Google Scholar 

  28. Fan F-L, Qin Z, Bai J, Rong W-D, Fan F-Y, Tian W, Wu X-L, Wang Y, Zhao L (2011) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    Article  Google Scholar 

  29. Patra S, Roy E, Kumar D, Madhuri R, Sharma PK (2015) Fast and selective preconcentration of europium from wastewater and coal soil by graphene oxide/silane@Fe3O4 dendritic nanostructure. Environ Sci Technol 49:6117–6126

    Article  Google Scholar 

  30. Roy E, Patra S, Kumar D, Madhuri R, Sharma PK (2015) Multifunctional magnetic reduced graphene oxide dendrites: synthesis, characterization and their applications. Biosens Bioelectron 68:726–735

    Article  Google Scholar 

  31. Rao TP, Metilda P, Gladias JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68:1047–1064

    Article  Google Scholar 

  32. Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  Google Scholar 

  33. Prakash A, Chandra S, Bahadur D (2012) Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon 50:4209–4219

    Article  Google Scholar 

  34. Cui C, He M, Chen B, Hu B (2014a) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(III) and Cr(VI). Anal Methods 6:8577–8583

    Article  Google Scholar 

  35. Cheng G, He M, Peng H, Hu B (2012) Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES. Talanta 88:507–515

    Article  Google Scholar 

  36. Cheng W, Xu J, Wang Y, Wu F, Xu X, Li J (2015a) Dispersion–precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water. J Colloid Interface Sci 445:93–101

    Article  Google Scholar 

  37. Jin Y, Liu F, Tonga M, Hou Y (2012) Removal of arsenate by cetyltrimethyl ammonium bromide modified magnetic nanoparticles. J Hazard Mater 227–228:461–468

    Article  Google Scholar 

  38. Saiz J, Bringas E, Ortiz I (2014) New functionalized magnetic materials for As5+ removal: adsorbent regeneration and reuse. Ind Eng Chem Res 53:18928–18934

    Article  Google Scholar 

  39. Kokate M, Garadkar K, Gole A (2013) One pot synthesis of magnetite-silica nanocomposites: applications as tags, entrapment matrix and in water purification. J Mater Chem A 1:2022–2029

    Article  Google Scholar 

  40. Mahmoud ME, Abdelwaha MS, Fathallah EM (2013) Design of novel nano-sorbents based on nano-magnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chem Eng J 223:318–327

    Article  Google Scholar 

  41. Wei Y, Yang R, Zhang YX, Wang L, Liu JH, Huang XJ (2011a) High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water. Chem Commun 47:11062–11064

    Article  Google Scholar 

  42. Song W, Liu M, Hu R, Tan X, Li J (2014) Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater. Chem Eng J 246:268–276

    Article  Google Scholar 

  43. Savina IN, English CJ, Whitby RLD, Zheng Y, Leistner A, Mikhalovsky SV, Cundy AB (2011) High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. J Hazard Mater 192:1002–1008

    Article  Google Scholar 

  44. Wei J, Chen X, Niu Y, Pan B (2012) Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water. J Hazard Mater 243:319–325

    Article  Google Scholar 

  45. Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, Xu H, Li X (2014a) Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal. J Hazard Mater 270:27–34

    Article  Google Scholar 

  46. Wen Z, Zhanga Y, Dai C, Sun Z (2015) Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite. J Hazard Mater 287:225–233

    Article  Google Scholar 

  47. Wen Z, Zhang Y, Dai C, Chen B, Guo S, Yu H, Wu D (2014) Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions. Microporous Mesoporous Mater 200:235–244

    Article  Google Scholar 

  48. Kong S, Wanga Y, Hua Q, Olusegun AK (2014) Magnetic nanoscale Fe-Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater. Colloids Surf A Physicochem Eng Asp 457:220–227

    Article  Google Scholar 

  49. Cui H-J, Caia J-K, Zhao H, Baoling Y, Ai C-L, Fu M-L (2014b) Fabrication of magnetic porous Fe–Mn binary oxide nanowires with superior capability for removal of As(III) from water. J Hazard Mater 279:26–31

    Article  Google Scholar 

  50. Basu T, Gupta K, Ghosh UC (2012) Performances of As(V) adsorption of calcined (250 °C) synthetic iron(III)-aluminum(III) mixed oxide in the presence of some groundwater occurring ions. Chem Eng J 183:303–314

    Article  Google Scholar 

  51. Ren Z, Zhang G, Chen JP (2011) Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J Colloid Interface Sci 358:230–237

    Article  Google Scholar 

  52. Fu F, Cheng Z, Dionysiou DD, Tang B (2015) Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: performance and mechanism. J Hazard Mater 298:261–269

    Article  Google Scholar 

  53. Long F, Gong J-L, Zeng G-M, Chen L, Wang X-Y, Deng J-H, Niu Q-Y, Zhang H-Y, Zhang X-R (2011) Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem Eng J 171:448–455

    Article  Google Scholar 

  54. Li X, Dou X, Li J (2012) Antimony (V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. J Environ Sci 24:1197–1203

    Article  Google Scholar 

  55. Z, Vukovi’c GD, Marinkovi’c AD, Moldovan M-S, Peri’c-Gruji’c AA, Uskokovi’c PS, Ristic MÐ (2012) Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem Eng J 181–182:174–181

    Google Scholar 

  56. Ntim SA, Mitra SJ (2011) Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. Chem Eng Data 56:2077–2083

    Article  Google Scholar 

  57. Vadahanambi S, Lee S-H, Kim W-J, Oh I-K (2013) Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47:10510–10517

    Google Scholar 

  58. Luo X, Wang C, Luo S, Dong R, Tu X, Zeng G (2012) Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites. Chem Eng J 187:45–52

    Article  Google Scholar 

  59. Zhou L, Ji L, Ma P-C, Shao Y, Zhang H, Gao W, Li Y (2014a) Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II). J Hazard Mater 265:104–114

    Article  Google Scholar 

  60. Zhao Y, Li J, Zhang S, Chen H, Shao D (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 3:18952–18959

    Article  Google Scholar 

  61. Fu Y, Wang J, Liu Q, Zeng H (2014b) Water-dispersible magnetic nanoparticle–graphene oxide composites for selenium removal. Carbon 77:710–721

    Article  Google Scholar 

  62. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703

    Article  Google Scholar 

  63. Marquina C, de Teresa JM, Serrate D, Marzo J, Cardoso FA, Saurel D, Cardoso S, Freitas PP, Ibarra MR (2012) GMR sensors and magnetic nanoparticles for immuno-chromatographic assays. J Magn Magn Mater 324:3495–3498

    Article  Google Scholar 

  64. Liu B, Dongfeng W, Li H, Xu Y, Zhang L (2011) As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination 272:286–292

    Article  Google Scholar 

  65. Noubactep CA (2008) A critical review on the process of contaminant removal in Fe0–H2O systems. Environ Technol 29:909–920

    Article  Google Scholar 

  66. Li W-P, Liao P-Y, Su C-H, Yeh C-S (2014) Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core–shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc 136:10062–10075

    Article  Google Scholar 

  67. Lu X, Li M, Tang C, Feng C, Liu X (2012) Electrochemical depassivation for recovering Fe0 reactivity by Cr(VI) removal with a permeable reactive barrier system. J Hazard Mater 213–214:355–360

    Article  Google Scholar 

  68. Torrey JD, Killgore JP, Bedford NM, Greenlee LF (2015) Oxidation behavior of zero-valent iron nanoparticles in mixed matrix water purification membranes. Environ Sci Water Res Technol 1:146–152

    Article  Google Scholar 

  69. Vernon JD, Bonzongo J-CJ (2014) Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents. J Hazard Mater 276:408–414

    Article  Google Scholar 

  70. Huang YH, Peddi PK, Tang C, Zeng H, Teng X (2013) Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater. Sep Purif Technol 118:690–698

    Article  Google Scholar 

  71. Ling L, Pan B, Zhang W-X (2015) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV). Water Res 71:274–281

    Article  Google Scholar 

  72. Kim SA, Kamala-Kannan S, Lee K-J, Park Y-J, Shea PJ, Lee W-H, Kim H-M, Oh B-T (2013) Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem Eng J 217:54–60

    Article  Google Scholar 

  73. Almeelbi T, Bezbaruah A (2013) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanopart Res 14:900–914

    Article  Google Scholar 

  74. Su Y, Adeleye AS, Keller AA, Huang Y, Dai C (2015) Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Res 74:47–57

    Article  Google Scholar 

  75. Petala E, Dimos K, Douvalis A, Bakas T, Tucek J, Zboˇril R, Karakassides MA (2013) Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. J Hazard Mater 261:295–306

    Article  Google Scholar 

  76. Zhou S, Wang D, Sun H, Chen J, Wu S, Na P (2014b) Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal. Water Air Soil Pollut 225:1945–1958

    Article  Google Scholar 

  77. Chauhan D, Dwivedi J, Sankararamakrishnan N (2014) Novel chitosan/pva/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environ Sci Pollut Res 21:9430–9442

    Article  Google Scholar 

  78. Mosaferi M, Nemati S, Khataee A, Nasseri S, Hashemi AA (2014) Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Health Sci Eng 12:74–85

    Article  Google Scholar 

  79. Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014a) Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131

    Article  Google Scholar 

  80. Zhang Z, Wang X, Wang Y, Xia S, Chen L, Zhang Y, Zhao J (2013a) Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. J Environ Sci 25:1044–1053

    Article  Google Scholar 

  81. Thanh DN, Singh M, Ulbrich P, Strnadova N, Šteˇpanek F (2011) Perlite incorporating c-Fe2O3 and a-MnO2 nanomaterials: preparation and evaluation of a new adsorbent for As(V) removal. Sep Purif Technol 82:93–101

    Article  Google Scholar 

  82. Lee HU, Lee SC, Lee Y-C, Vrtnik S, Kim C, Lee SG, Lee YB, Nam B, Lee JW, Park SY, Lee SM, Lee J (2013) Sea-urchin-like iron oxide nanostructures for water treatment. J Hazard Mater 262:130–136

    Article  Google Scholar 

  83. Biswal M, Bhardwaj K, Singh PK, Singh P, Yadav P, Prabhune A, Rode C, Ogale S (2013) Nanoparticle-loaded multifunctional natural seed gel-bits for efficient water purification. RSC Adv 3:2288–2295

    Article  Google Scholar 

  84. Dong C, Chena W, Liu C (2014) Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution. Appl Surf Sci 292:1067–1076

    Article  Google Scholar 

  85. Yuan L, Liu Y (2013) Removal of Pb(II) and Zn(II) from aqueous solution by ceramisite prepared by sintering bentonite, iron powder and activated carbon. Chem Eng J 215–216: 432–439

    Article  Google Scholar 

  86. Fan L, Zhang S, Zhang X, Zhou H, Lu Z, Wang S (2015) Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites. J Environ Manage 156:109–114

    Article  Google Scholar 

  87. Zelmanov G, Semiat R (2013) Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep Purif Technol 103:167–172

    Article  Google Scholar 

  88. Zhang C, Shan C, Jin Y, Tong M (2014b) Enhanced removal of trace arsenate by magnetic nanoparticles modified with arginine and lysine. Chem Eng J 254:340–348

    Article  Google Scholar 

  89. Wang J, Xu W, Chen L, Huang X, Liu J (2014b) Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem Eng J 251:25–34

    Article  Google Scholar 

  90. Feng L, Cao M, Ma X, Zhu Y, Hu C (2013) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217-218:439–446

    Article  Google Scholar 

  91. Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185:1177–1186

    Article  Google Scholar 

  92. Liu Y, Chen M, Hao Y (2013) Study on the adsorption of Cu(II) by EDTA functionalized Fe3O4 magnetic nano-particles. Chem Eng J 218:46–54

    Article  Google Scholar 

  93. Prasad KS, Gandhi P, Selvaraj K (2014) Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Appl Surf Sci 317:1052–1059

    Article  Google Scholar 

  94. Zhan S, Yang Y, Shen Z, Shan J, Li Y, Yang S, Zhu D (2014) Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. J Hazard Mater 274:115–123

    Article  Google Scholar 

  95. Singh S, Barick KC, Bahadur D (2011) Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J Hazard Mater 192:1539–1547

    Article  Google Scholar 

  96. Wei Z, Zhou Z, Yang M, Lin C, Zhao Z, Huang D, Chen Z, Gao J (2011b) Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J Mater Chem 21:16344–16348

    Article  Google Scholar 

  97. Nangmenyi G, Li X, Mehrabi S, Mintz E, Economy J (2011) Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water. Mater Lett 65:1191–1193

    Article  Google Scholar 

  98. Hwang YH, Kim DG, Shin HS (2011) Mechanism study of nitrate reduction by nano zero valent iron. J Hazard Mater 185:1513–1521

    Article  Google Scholar 

  99. Dorathi PJ, Kandasamy P (2012) Dechlorination of chlorophenols by zero valent iron impregnated silica. J Environ Sci 24:765–773

    Article  Google Scholar 

  100. Yin W, Wu J, Li P, Wang X, Zhu N, Wu P, Yang B (2012) Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: the effects of pH, iron dosage, oxygen and common dissolved anions. Chem Eng J 184:198–204

    Article  Google Scholar 

  101. Shirin S, Balakrishnan VK (2011) Using chemical reactivity to provide insights into environmental transformations of priority organic substances: the Fe0-mediated reduction of acid blue 129. Environ Sci Technol 45:10369–10377

    Article  Google Scholar 

  102. Shimizu A, Tokumura M, Nakajima K, Kawase Y (2012) Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation. J Hazard Mater 201–202:60–67

    Article  Google Scholar 

  103. Ahn SC, Oh SY, Cha DK (2008) Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J Hazard Mater 156:17–22

    Article  Google Scholar 

  104. Xu J, Hao ZW, Xie CS, Lv XS, Yang YP, Xu XH (2012b) Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron. Desalination 284:9–13

    Article  Google Scholar 

  105. Pan JR, Huang C, Hsieh WP, Wu BJ (2012) Reductive catalysis of novel TiO2/Fe0 composite under UV irradiation for nitrate removal from aqueous solution. Sep Purif Technol 84:52–55

    Article  Google Scholar 

  106. Zhang C, Chen L, Wang T-J, Su C-L, Jin Y (2014c) Synthesis and properties of a magnetic core–shell composite nano-adsorbent for fluoride removal from drinking water. Appl Surf Sci 317:552–559

    Article  Google Scholar 

  107. Wan Z, Chen W, Liu C, Liu Y, Dong C (2015) Preparation and characterization of r-AlOOH@CS magnetic nanoparticle as a novel adsorbent for removing fluoride from drinking water. J Colloid Int Sci 443:115–124

    Article  Google Scholar 

  108. Bhaumik M, Leswifi TY, Maity A, Srinivasu VV, Onyango MS (2011) Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 186:150–159

    Article  Google Scholar 

  109. Wang J, Kang D, Yu X, Ge M, Chen Y (2015) Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal. Chem Eng J 264:506–513

    Article  Google Scholar 

  110. Xu J-h, Gao N-y, Zhao D-y, Yin D-q, Zhang H, Gao Y-q, Shi W (2015) Comparative study of nano-iron hydroxide impregnated granular activated carbon (Fe–GAC) for bromate or perchlorate removal. Sep Purif Technol 147:9–16

    Article  Google Scholar 

  111. Zelmanov G, Semiat R (2015) The influence of competitive inorganic ions on phosphate removal from water by adsorption on iron (Fe+3) oxide/hydroxide nanoparticles-based agglomerates. J Water Process Eng 5:143–152

    Article  Google Scholar 

  112. Babuponnusami A, Muthukumar K (2012) Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Sep Purif Technol 98:130–135

    Article  Google Scholar 

  113. Nakatsuji Y, Salehi Z, Kawase Y (2015) Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron. J Environ Manage 152:183–191

    Article  Google Scholar 

  114. Chen F, Yan F, Chen Q, Wang Y, Han L, Chen Z, Fang S (2014) Fabrication of Fe3O4@SiO2@TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Dalton Trans 43:13537–13544

    Article  Google Scholar 

  115. Qadri S, Ganoe A, Haik Y (2009) Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J Hazard Mater 169:318–323

    Article  Google Scholar 

  116. Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater 160:643–647

    Article  Google Scholar 

  117. Zhang Z, Kong J (2011) Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes 63-from aqueous solution. J Hazard Mater 193:325–329

    Article  Google Scholar 

  118. Chang SH, Chuang SH, Li HC, Liang HH, Huang LC (2009) Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. J Hazard Mater 166:1279–1288

    Article  Google Scholar 

  119. Zhang Y, Liu Y, Jing Y, Zhao Z, Quan X (2012) Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality. J Environ Sci 24:720–727

    Article  Google Scholar 

  120. Li WW, Zhang Y, Zhao JB, Yang YL, Zeng RJ, Liu HQ, Feng YJ (2013) Synergetic decolorization of reactive blue 13 by zero-valent iron and anaerobic sludge. Bioresour Technol 149:38–43

    Article  Google Scholar 

  121. Zhang J, Li B, Yang W, Liu J (2014d) Synthesis of magnetic Fe3O4@hierarchical hollow silica nanospheres for efficient removal of methylene blue from aqueous solutions. Ind Eng Chem Res 53:10629–10636

    Article  Google Scholar 

  122. Zhang H, Li X, He G, Zhan J, Liu D (2013b) Preparation of magnetic composite hollow microsphere and its adsorption capacity for basic dyes. Ind Eng Chem Res 52:16902–16910

    Article  Google Scholar 

  123. Yao Y, Cai Y, Lu F, Qin J, Wei F, Xu C, Wang S (2014) Magnetic ZnFe2O4−C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind Eng Chem Res 53:17294–17302

    Article  Google Scholar 

  124. Zhang P, Mo Z, Han L, Zhu X, Wang B, Zhang C (2014e) Preparation and photocatalytic performance of magnetic tio2/montmorillonite/Fe3O4 nanocomposites. Ind Eng Chem Res 53:8057–8061

    Article  Google Scholar 

  125. Ai L, Zhang C, Chen Z (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192:1515–1524

    Article  Google Scholar 

  126. Wang H, Jiang H, Wang S, Shi W, He J, Liu H, Huang Y (2014c) Fe3O4–MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv 4:45809–45815

    Article  Google Scholar 

  127. Han X, Zhang L, Li C (2014) Preparation of polydopamine-functionalized graphene–Fe3O4 magnetic composites with high adsorption capacities. RSC Adv 4:30536–30541

    Article  Google Scholar 

  128. Pawar RC, Choi D-H, Lee CS (2015) Reduced graphene oxide composites with MWCNTs and single crystalline hematite nano rhombohedra for applications in water purification, Int. J. Hydrogen Energy 40:767–778

    Article  Google Scholar 

  129. Wang Z (2013) Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chem Eng 1:1551–1554

    Article  Google Scholar 

  130. Luo M, Liu D, Zhao L, Han J, Liang Y, Wang P, Zhou Z (2014) A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal Chim Acta 852:88–96

    Article  Google Scholar 

  131. Zhu K, Sun C, Chen H, Baig SA, Sheng T, Xu X (2013) Enhanced catalytic hydrodechlorination of 2,4-dichlorophenoxyacetic acid by nanoscale zero valent iron with electrochemical technique using a palladium/nickel foam electrode. Chem Eng J 223:192–199

    Article  Google Scholar 

  132. Zhang Y-L, Zhang J, Daia C-M, Zhou X-F, Liu S-G (2013c) Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydr Polym 97:809–816

    Article  Google Scholar 

  133. Dai J, Pan J, Xu L, Li X, Zhou Z, Zhang R, Yan Y (2012) Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. J Hazard Mater 205-206:179–188

    Article  Google Scholar 

  134. Fan L, Zhang Y, Li X, Luo C, Lu F, Qiu H (2012) Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloid Surf, B 91:250–257

    Article  Google Scholar 

  135. Markides H, Rotherham M, El Haj AJ (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomat 2012

    Google Scholar 

  136. Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578

    Article  Google Scholar 

  137. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  Google Scholar 

  138. Lundqvist M, Stigler J, Cedervall T (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509

    Article  Google Scholar 

  139. Yang WJ, Lee JH, Hong SC, Lee J, Lee J, Han D-W (2013) Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials 6:4689–4706

    Article  Google Scholar 

  140. Laurent S, Burtea C, Thirifays C, UO H, Mahmoudi M 2012 Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 7(1):Article ID e29997

    Google Scholar 

  141. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein−canoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to DST, BRNS, and ISM for sponsoring the research projects of Dr. Rashmi Madhuri (SERB/F/2798/2016-17, SB/FT/CS-155/2012, FRS/43/2013-2014/AC, 34/14/21/2014-BRNS) and Dr. Prashant K. Sharma (SR/FTP/PS-157/2011, FRS/34/2012-2013/APH, 34/14/21/2014-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Madhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roy, E., Patra, S., Karfa, P., Madhuri, R., Sharma, P.K. (2017). Role of Magnetic Nanoparticles in Providing Safe and Clean Water to Each Individual. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_8

Download citation

Publish with us

Policies and ethics