Skip to main content

Spin Polarization and Small Size Effect in Bare Silver Nanoparticles

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

In this chapter, we present the results of studies conducted on the magnetic properties that developed in ultrasmall bare Ag nanoparticles and the critical particle size for developing a sizable spontaneous magnetic moment in the nanoparticles. Seven sets of bare Ag nanoparticle assemblies, with diameters from 2 to 36 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the assemblies. Lattice relaxation from the small size effect is clearly revealed in particles with a diameter smaller than 12 nm, where the electron charges are more extensively distributed toward the central regions of the two nearest neighbors. The extension of the electron charge distribution is not isotopic in all crystallographic directions, revealing that redistribution involves not only spherically distributed 5s electrons but also includes directional 4d electrons. The isothermal magnetization M(H a) curves of the particle superspins reveal Langevin field profiles. Contributions to the magnetization from particles of different sizes in the assemblies were considered when analyzing the M(H a) curves. The results show that the maximum superspin moment will appear in 2.6 nm Ag particles. The atoms on the surface and in the core of the bare Ag nanoparticles contribute to the superspin moment. Magnetic field–induced Zeeman magnetization from the quantum confined Kubo gap opening is revealed in Ag nanoparticles smaller than 8 nm in diameter. It is the disruptions of lattice periodicity that trigger the redistribution of electron charges for the development of spontaneous superspin in Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holleman A, Wiberg N (1985) Lehrbuch der Anorganischen Chemie, de Gruyter, 33rd edn, p 1486

    Google Scholar 

  2. Hüger E, Osuch K (2005) Making a noble metal of Pd. Europhys Lett 71:276

    Article  Google Scholar 

  3. Fuster G, Tyler JM, Brener NE, Callaway J (1990) Phys Rev B 42:7332

    Article  Google Scholar 

  4. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia, pp288–293

    Google Scholar 

  5. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  Google Scholar 

  6. Andres RP, Bielefeld JD, Henderson JI, Janes DB, Kolagunta VR, Kubiak CP, Mahoney WJ, Osifchin RG (1996) Science 273:1690

    Article  Google Scholar 

  7. Volokitin Y, Sinzig J, de Jongh LJ, Schmid G, Vargaftik MN, Moiseev II (1996) Nature (London) 384:621

    Article  Google Scholar 

  8. Crespo P, Litrán R, Rojas TC, Multigner M, de la Fuente JM, Sánchez-López JC, García MA, Hernando A, Penedés S, Fernández A (2004) Phys Rev Lett 93:087204

    Article  Google Scholar 

  9. Zhang P, Sham TK (2003) X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys Rev Lett 90:245502

    Article  Google Scholar 

  10. López-Cartes C, Rojas TC, Litrán R, Martínez-Martínez D, de la Fuente JM, Penadés S, Fernández A (2005) J Phys Chem B 109:8761

    Article  Google Scholar 

  11. Li C-Y, Karna SK, Wang C-W, Li W-H (2013) Spin polarization and quantum spins in Au nanoparticles. Int J Mol Sci 14:17618–17642

    Article  Google Scholar 

  12. Prutton M (1994) Introduction to surface physics. Clarendon Press, Oxford, pp 108–138

    Google Scholar 

  13. Dickey JM, Paskin A (1968) Phonon spectrum changes in small particles and their implications for superconductivity. Phys Rev Lett 21:1441–1443

    Article  Google Scholar 

  14. Knorr K, Barth N (1970) Superconductivity and phonon spectra of disordered thin films. Solid State Commun 8:1085

    Article  Google Scholar 

  15. Novotny V, Meincke PPM, Watson JHP (1972) Effect of size and surface on the specific heat of small lead particles. Phys Rev Lett 28:901–903

    Article  Google Scholar 

  16. Kubo R (1962) Electronic properties of metallic fine particles. I. J Physical Soc Japan 17:975–986

    Article  Google Scholar 

  17. Kawabata A, Kubo R (1966) Electronic properties of fine metallic particles. II. plasma resonance absorption. J Physical Soc Japan 21:1765–1772

    Article  Google Scholar 

  18. Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533–606 and references therein

    Google Scholar 

  19. Hung C-H, Lee C-H, Hsu C-K, Li C-Y, Karna SK, Wang C-W, Wu C-M, Li W-H (2013) Unusual large magnetic moments in the normal state and superconducting state of Sn nanoparticles. J Nanopart Res 15:1905

    Article  Google Scholar 

  20. Litrán R, Sampedro B, Rojas TC, Multigner M, Sánchez-López JC, Crespo P, López-Cartes C, García MA, Hernando A, Fernández A (2006) Magnetic and microstructural analysis of palladium nanoparticles with different capping systems. Phys Rev B 73:054404

    Article  Google Scholar 

  21. Garcia MA, Merino JM, Fernández Pinel E, Quesada A, de la Venta J, Ruíz González ML, Castro GR, Crespo P, Llopis J, González-Calbet JM, Hernando A (2007) Magnetic properties of ZnO nanoparticles. Nano Lett 7:1489–1494

    Article  Google Scholar 

  22. Karna SK, Li C-Y, Wu C-M, Hsu C-K, Wang C-W, Li W-H (2011) Observations of large magnetic moments in icosahedral Pb nanoparticles. J Phys Chem C 115:8906–8910

    Article  Google Scholar 

  23. Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, de Muro IG, Suzuki K, Plazaola F, Rojo T (2008) Nano Lett 8:661

    Article  Google Scholar 

  24. Li W-H, Wu SY, Yang CC, Lai SK, Lee KC, Huang HL, Yang HD (2002) Phys Rev Lett 89:135504

    Article  Google Scholar 

  25. Hori H, Teranishi T, Nakae Y, Seino Y, Miyake M, Yamada S (1999) Phys Lett A 263:406

    Article  Google Scholar 

  26. Hori H, Yamamoto Y, Iwamoto T, Miura T, Teranishi T, Miyake M (2004) Phys Rev B 69:174411

    Article  Google Scholar 

  27. Yamamoto Y, Miura T, Suzuki M, Kawamura N, Miyagawa H, Nakamura T, Kobayashi K, Teranishi T, Hori H (2004) Phys Rev Lett 93:116801

    Article  Google Scholar 

  28. de la Presa P, Multigner M, de la Venta J, García MA (2006) J Appl Phys 100:123915

    Article  Google Scholar 

  29. García MA, Merino JM, Fernández Pinel E, Quesada A, de la Venta J, Ruíz González ML, Castro GR, Crespo P, Llopis J, González-Calbet JM, Hernando A (2007) Nano Lett 7:1489

    Article  Google Scholar 

  30. Zhang P, Sham TK (2002) Appl Phys Lett 81:736

    Article  Google Scholar 

  31. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticles at 1.1 Å resolution. Science 318:430–433

    Article  Google Scholar 

  32. Carmeli I, Leitus G, Naaman R, Reich S, Vager Z (2003) Magnetism induced by the organization of self-assembled monolayers. J Chem Phys 118:10372–10375

    Article  Google Scholar 

  33. Dutta P, Pal S, Seehra MS, Anand M, Roberts CB (2007) Magnetism in dodecanethiol-capped gold nanoparticles: role of size and capping agent. Appl Phys Lett 90:213102

    Article  Google Scholar 

  34. De la Venta J, Pucci A, Fernández Pinel E, García MA, de Julián Fernández C, Crespo P, Mazzoldi P, Ruggeri G, Hernando A (2007) Magnetism in polymers with embedded gold nanoparticles. Adv Mater 19:875–877

    Article  Google Scholar 

  35. Wu C-M, Li C-Y, Kuo Y-T, Wang C-W, Wu S-Y, Li W-H (2010) Quantum spins in Mackay icosahedral gold nanoparticles. J Nanopart Res 12:177

    Article  Google Scholar 

  36. Li C-Y, Wu C-M, Karna SK, Wang C-W, Hsu D, Wang C-J, Li W-H (2011) Intrinsic magnetic moments of gold nanoparticles. Phys Rev B 83:174446–174450

    Article  Google Scholar 

  37. Batsaikhan E, Chen Y-C, Lee C-H, Li H-C, Li W-H (2015) Development of ferromagnetic superspins in bare Cu nanoparticles by electronic charge redistribution. Int J Mol Sci 16:23165–23176

    Article  Google Scholar 

  38. Shih P-H, Li W-H, Wu SY (2015) Surface spin polarization induced ferromagnetic Ag nanoparticles. J Magn Magn Mater 406:30–34

    Article  Google Scholar 

  39. Warren BE (1990) X-ray diffraction. Dover Publications, Dover, pp 251–314

    Google Scholar 

  40. Sahoo S, Petracic O, Kleemann W, Nordblad P, Cardoso S, Freitas PP (2003) Aging and memory in a superspin glass. Phys Rev B 67:214422

    Article  Google Scholar 

  41. Nakamae S (2014) Out-of-equilibrium dynamics in superspin glass state of strongly interacting magnetic nanoparticle assemblies. J Magn Magn Mater 355:225

    Article  Google Scholar 

  42. Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:S120–S129

    Article  Google Scholar 

  43. Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15:R841–R896

    Google Scholar 

  44. Craik D (1995) Magnetism-principles and applications. Wiley, New York, pp 99–100

    Google Scholar 

  45. Blundell S (2001) Magnetism in condensed matter. Oxford University Press, Oxford, pp 23–30

    Google Scholar 

  46. Silva NJO, Carlos LD, Amaral VS (2005) Phys Rev Lett 94:039707

    Article  Google Scholar 

  47. Mørup S, Frandsen C (2004) Thermoinduced magnetization in nanoparticles of antiferromagnetic materials. Phys Rev Lett 92:217201

    Article  Google Scholar 

  48. Mørup S, Hansen BR (2005) Uniform magnetic excitations in nanoparticles. Phys Rev B 72:024418

    Article  Google Scholar 

  49. Pereiro M, Baldomir D (2005) Determination of the lowest-energy structure of Ag8 from first principles calculations. Phys Rev A 72:45201

    Article  Google Scholar 

  50. Pereiro M, Baldomir D, Arias JE (2007) Unexpected magnetism of small silver clusters. Phys Rev A 75:063204

    Article  Google Scholar 

  51. Chang CM, Chou MY (2004) Phys Rev Lett 93:133401

    Article  Google Scholar 

  52. Harris JGE, Grimaldi JE, Awschalom DD, Chiolero A, Loss D (1999) Excess spin and the dynamics of antiferromagnetic ferritin. Phys Rev B 60:3453–3456

    Article  Google Scholar 

  53. Aquino R, Depeyrot J, Sousa MH, Tourinho FA, Dubois E, Perzynski R (2005) Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles. Phys Rev B 72:184435

    Article  Google Scholar 

  54. Shendruk TN, Desautels RD, Southern BW, van Lierop J (2007) The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions. Nanotechnology 18:455704

    Article  Google Scholar 

  55. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York, p 446

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Council of Taiwan under Grant MOST 104-2112-M-008-007-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hsien Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, WH., Lee, CH. (2017). Spin Polarization and Small Size Effect in Bare Silver Nanoparticles. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_6

Download citation

Publish with us

Policies and ethics