Skip to main content

Bimagnetic Core/Shell Nanoparticles: Current Status and Future Possibilities

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

In this chapter, we present recent advances in interface properties, and synthetic approaches to and applications of bimagnetic core/shell nanoparticles (NPs). First, a brief overview of magnetic core/shell architectures is presented. Then we introduce the principles behind magnetic and structural properties. In this connection, interface phenomena such as the proximity effect, exchange coupling, and exchange bias are summarized. Furthermore, the effects of crystal morphology and phase composition on these exchange interactions are discussed. Chemical methods to synthesize bimagnetic core/shell NPs, including thermal decomposition, seed-mediated growth, coprecipitation, and hydro/solvothermal approaches, are presented. Once produced, surface properties of the core/shell architecture need to be modulated since each application has special requirements. Moreover, a section devoted to the surface functionalization of NPs is given. Finally, applications of bimagnetic core/shell NPs in hyperthermia, magnetic resonance imaging, permanent magnets, and magnetic recording data, among other areas, are discussed in more depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102(5):1413–1414

    Article  Google Scholar 

  2. Nogués J et al (2005) Exchange bias in nanostructures. Phys Rep 422(3):65–117

    Article  Google Scholar 

  3. Rinaldi-Montes N et al (2016) Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. J Magn Magn Mater 400:236–241

    Article  Google Scholar 

  4. López-Ortega A et al (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32

    Article  Google Scholar 

  5. Lavorato GC et al (2015) Magnetic interactions and energy barrier enhancement in core/shell bimagnetic nanoparticles. J Phys Chem C 119(27):15755–15762

    Article  Google Scholar 

  6. Qian H-S et al (2010) ZnO/ZnFe2O4 magnetic fluorescent bifunctional hollow nanospheres: synthesis, characterization, and their optical/magnetic properties. J Phys Chem C 114(41):17455–17459

    Article  Google Scholar 

  7. Lee J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    Article  Google Scholar 

  8. Lee J-H et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422

    Article  Google Scholar 

  9. Manna PK, Yusuf SM (2014) Two interface effects: exchange bias and magnetic proximity. Phys Rep 535(2):61–99

    Article  Google Scholar 

  10. Hu X-W et al (2015) Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties. ACS Appl Mater Interfaces 7(18):9972–9981

    Article  Google Scholar 

  11. Gomes JDA et al (2008) Synthesis of core−shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C 112(16):6220–6227

    Article  Google Scholar 

  12. Li X et al (2011) The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction. Nanotechnology 22(4):045707

    Article  Google Scholar 

  13. Mourdikoudis S et al (2007) Effect of air xexposure on structural and magnetic features of FeCo nanoparticles. Mod Phys Lett B 21(18):1161–1168

    Article  Google Scholar 

  14. Yoon T-J et al (2011) Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed 50(20):4663–4666

    Article  Google Scholar 

  15. Somaskandan K et al (2008) Surface protected and modified iron based core-shell nanoparticles for biological applications. New J Chem 32(2):201–209

    Article  Google Scholar 

  16. Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134(24):10182–10190

    Article  Google Scholar 

  17. Casavola M et al (2009) Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures. Nano Lett 9(1):366–376

    Article  Google Scholar 

  18. Chaubey GS et al (2008) Synthesis and characterization of bimagnetic bricklike nanoparticles. Chem Mater 20(2):475–478

    Article  Google Scholar 

  19. Lima E et al (2012) Bimagnetic CoO core/CoFe2O4 shell nanoparticles: synthesis and magnetic properties. Chem Mater 24(3):512–516

    Article  Google Scholar 

  20. Juhin A et al (2014) Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles. Nanoscale 6(20):11911–11920

    Article  Google Scholar 

  21. Estrader M et al (2013) Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat Commun 4:2960

    Article  Google Scholar 

  22. Zaim A, Kerouad M, El Amraoui Y (2009) Magnetic properties of a ferrimagnetic core/shell nanocube Ising model: a Monte Carlo simulation study. J Magn Magn Mater 321(8):1077–1083

    Article  Google Scholar 

  23. Yu MH et al (2003) Towards a magnetic core–shell nanostructure: a novel composite made by a citrate–nitrate auto-ignition process. Mater Sci Eng: B 103(3):262–270

    Article  Google Scholar 

  24. Salazar-Alvarez G et al (2007) Synthesis and size-dependent exchange bias in inverted core−shell MnO|Mn3O4 nanoparticles. J Am Chem Soc 129(29):9102–9108

    Article  Google Scholar 

  25. Skumryev V et al (2003) Beating the superparamagnetic limit with exchange bias. Nature 423(6942):850–853

    Article  Google Scholar 

  26. Lottini E et al (2016) Strongly exchange coupled core|shell nanoparticles with high magnetic anisotropy: a strategy towards rare earth-free permanent magnets. Chem Mater 28(12):4214–4222

    Article  Google Scholar 

  27. Leite GCP et al (2012) Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J Magn Magn Mater 324(18):2711–2716

    Article  Google Scholar 

  28. Nandwana V et al (2009) Bimagnetic nanoparticles with enhanced exchange coupling and energy products. J Appl Phys 105(1):014303

    Article  Google Scholar 

  29. Liu Y et al (2013) PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomed Nanotechnol Biol Med 9(7):1077–1088

    Article  Google Scholar 

  30. Manna PK et al (2011) The magnetic proximity effect in a ferrimagnetic Fe3O4 core/ferrimagnetic γ-Mn2O3 shell nanoparticle system. J Phys Condens Matter 23(50):506004

    Article  Google Scholar 

  31. Hauser J, Theuerer H, Werthamer N (1966) Proximity effects between superconducting and magnetic films. Phys Rev 142(1):118

    Article  Google Scholar 

  32. Zuckermann M (1973) The proximity effect for weak itinerant ferromagnets. Solid State Commun 12(7):745–747

    Article  Google Scholar 

  33. Lenz K, Zander S, Kuch W (2007) Magnetic proximity effects in antiferromagnet/ferromagnet bilayers: the impact on the Néel temperature. Phys Rev Lett 98(23):237201

    Article  Google Scholar 

  34. Won C et al (2005) Studies of FeMn∕Co/Cu(001) films using photoemission electron microscopy and surface magneto-optic Kerr effect. Phys Rev B 71(2):024406

    Article  Google Scholar 

  35. Wang B-Y et al (2013) Enhanced perpendicular magnetic anisotropy in Fe/Mn bilayers by incorporating ultrathin ferromagnetic underlayer through magnetic proximity effect. Appl Phys Lett 103(4):042407

    Article  Google Scholar 

  36. Valev VK et al (2006) Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface. Phys Rev Lett 96(6):067206

    Article  Google Scholar 

  37. Xu X et al (2015) Exchange coupled SrFe12O19/Fe-Co core/shell particles with different shell thickness. Electron Mater Lett 11(6):1021–1027

    Article  Google Scholar 

  38. Heinrich B (2008) Exchange coupling in magnetic multilayers. In: Zabel H, Bader SD (eds) Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. Springer, Berlin, pp 185–250

    Google Scholar 

  39. Liu F, Hou Y, Gao S (2014) Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem Soc Rev 43(23):8098–8113

    Article  Google Scholar 

  40. Lopez-Ortega A et al (2012) Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3-xO4/FexMn3-xO4, core/shell heterostructured nanoparticles. Nanoscale 4(16):5138–5147

    Article  Google Scholar 

  41. Ali M et al (2007) Exchange bias using a spin glass. Nat Mater 6(1):70–75

    Article  Google Scholar 

  42. Khurshid H et al (2014) Tuning exchange bias in Fe/γ-Fe2O3 core-shell nanoparticles: impacts of interface and surface spins. Appl Phys Lett 104(7):072407

    Article  Google Scholar 

  43. Huang P-H, Huang H-H, Lai C-H (2007) Coexistence of exchange-bias fields and vertical magnetization shifts in ZnCoO∕NiO system. Appl Phys Lett 90(6):062509

    Article  Google Scholar 

  44. Inderhees SE et al (2008) Manipulating the magnetic structure of Co core/CoO shell nanoparticles: implications for controlling the exchange bias. Phys Rev Lett 101(11):117202

    Article  Google Scholar 

  45. Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. In: Radu F, Zabel H (eds) Magnetic heterostructures. Springer, Berlin, pp 97–184

    Google Scholar 

  46. Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. In: Zabel H, Bader SD (eds) Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. Springer, Berlin, pp 97–184

    Google Scholar 

  47. Iglesias O, Labarta A, Batlle X (2008) Exchange bias phenomenology and models of core/shell nanoparticles. J Nanosci Nanotechnol 8(6):2761–2780

    Google Scholar 

  48. Vasilakaki M, Trohidou KN, Nogués J (2015) Enhanced magnetic properties in antiferromagnetic-core/ferrimagnetic-shell nanoparticles. Sci Rep 5

    Google Scholar 

  49. Gawande MB et al (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–7590

    Article  Google Scholar 

  50. Galvão WS et al (2016) Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications. Solid State Phenom 241:139–176

    Article  Google Scholar 

  51. Singamaneni S et al (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21(42):16819–16845

    Article  Google Scholar 

  52. Leszczyński B et al (2016) The influence of oxidation process on exchange bias in egg-shaped FeO/Fe3O4 core/shell nanoparticles. J Magn Magn Mater 416:269–274

    Article  Google Scholar 

  53. Park J et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895

    Article  Google Scholar 

  54. Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  Google Scholar 

  55. Lee W-R et al (2005) Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. J Am Chem Soc 127(46):16090–16097

    Article  Google Scholar 

  56. Sun X et al (2011) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12(1):246–251

    Article  Google Scholar 

  57. Khurshid H et al (2013) Synthesis and magnetic properties of core/shell FeO/Fe3O4 nano-octopods. J Appl Phys 113(17):17B508

    Google Scholar 

  58. Baaziz W et al (2013) High exchange bias in Fe3−δO4@ CoO core shell nanoparticles synthesized by a one-pot seed-mediated growth method. J Phys Chem C 117(21):11436–11443

    Article  Google Scholar 

  59. Kooti M, Matturi L (2011) Microwave-assisted fabrication of γ-Fe2O3 nanoparticles from tris (acetylacetonato) iron (III). Int NanoLett 1:38–42

    Google Scholar 

  60. Yelenich O et al (2015) Synthesis and properties MFe2O4 (M=Fe, Co) nanoparticles and core–shell structures. Solid State Sci 46:19–26

    Article  Google Scholar 

  61. Zhou G et al (2016) synthesized core–shell Fe2O3/Ni2O3 at room temperature by co-precipitation. The core/shell NPs presented an excellently typical bipolar resistance switching memory effects. J Alloys Compd 678:31–35

    Google Scholar 

  62. Kikuchi T et al (2011) Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. J Magn Magn Mater 323(10):1216–1222

    Article  Google Scholar 

  63. Baumgartner J et al (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310–314

    Article  Google Scholar 

  64. Castro VF, de Queiroz AA (2011) Pontos quânticos magneto ativos: uma nova fronteira para a medicina terapêutica e diagnóstica. Rev Bras Fís Méd 4(3):15–18

    Google Scholar 

  65. Freire R et al (2013) MZnFe2O4 (M= Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J Nanopart Res 15(5):1–12

    Article  Google Scholar 

  66. Sattar A, El-Sayed H, ALsuqia I (2015) Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J Magn Magn Mater 395:89–96

    Article  Google Scholar 

  67. Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29(5):511–535

    Article  Google Scholar 

  68. Haberland H et al (1993) Thin film growth by energetic cluster impact (ECI): comparison between experiment and molecular dynamics simulations. Mater Sci Eng: B 19(1):31–36

    Article  Google Scholar 

  69. Kołtunowicz TN et al (2017) Ferromagnetic resonance spectroscopy of CoFeZr-Al2O3 granular films containing “FeCo core–oxide shell” nanoparticles. J Magn Magn Mater 421:98–102

    Article  Google Scholar 

  70. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  Google Scholar 

  71. Freire RM et al (2013) MZnFe2O4 (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J Nanopart Res 15(5):1616

    Article  Google Scholar 

  72. Gonçalves NS et al (2012) Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater Lett 72:36–38

    Article  Google Scholar 

  73. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2:154–160

    Article  Google Scholar 

  74. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol 6(9):534

    Article  Google Scholar 

  75. Ji W et al (2014) Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd 589:61–66

    Article  Google Scholar 

  76. Weibel A et al (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater 17(9):2378–2385

    Article  Google Scholar 

  77. Rietveld H (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152

    Article  Google Scholar 

  78. Fontaíña Troitiño N et al (2014) Exchange bias effect in CoO@Fe3O4 core–shell octahedron-shaped nanoparticles. Chem Mater 26(19):5566–5575

    Article  Google Scholar 

  79. Gabriel CL et al (2014) Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles. Nanotechnology 25(35):355704

    Article  Google Scholar 

  80. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 192(1):55–69

    Article  Google Scholar 

  81. Estradé S et al (2012) Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron 43(1):30–36

    Article  Google Scholar 

  82. Nellist PD, Pennycook SJ (2000) The principles and interpretation of annular dark-field Z-contrast imaging. In: Peter WH (ed) Advances in imaging and electron physics. Elsevier, San Diego, pp 147–203

    Google Scholar 

  83. Krycka KL et al (2013) Resolving material-specific structures within Fe3O4|γ-Mn2O3 core|shell nanoparticles using anomalous small-angle X-ray scattering. ACS Nano 7(2):921–931

    Article  Google Scholar 

  84. Liu X et al (2015) Systematic study of exchange coupling in core–shell Fe3−δO4@CoO nanoparticles. Chem Mater 27(11):4073–4081

    Article  Google Scholar 

  85. Sathya A et al (2016) CoxFe3–xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28(6):1769–1780

    Article  Google Scholar 

  86. Knappett BR et al (2013) Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy. Nanoscale 5(13):5765–5772

    Article  Google Scholar 

  87. Khan U et al (2016) Response of iron oxide on hetero-nanostructures of soft and hard ferrites. Superlattices Microstruct 92:374–379

    Article  Google Scholar 

  88. Dodrill B (1999) Magnetic media measurements with a VSM. Lake Shore Cryotronics, Westerville, p 575

    Google Scholar 

  89. Gao Y et al (2016) Exchange bias effect in CuCr2O4/Cr2O3 nanogranular systems. J Alloys Compd 673:126–130

    Article  Google Scholar 

  90. Srivastava S, Gajbhiye NS (2016) Exchange coupled L1 0-FePt/fcc-FePt nanomagnets: synthesis, characterization and magnetic properties. J Magn Magn Mater 401:969–976

    Article  Google Scholar 

  91. Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, New York, pp 482–498

    Google Scholar 

  92. Eisenmenger J, Schuller IK (2003) Magnetic nanostructures: overcoming thermal fluctuations. Nat Mater 2(7):437–438

    Article  Google Scholar 

  93. Pankhurst QA et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    Article  Google Scholar 

  94. Bao Y et al (2016) Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51(1):513–553

    Article  Google Scholar 

  95. Frey NA et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542

    Article  Google Scholar 

  96. Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192(2):203–232

    Article  Google Scholar 

  97. Falk RB, Hooper GD (1961) Elongated iron-cobalt: ferrite, a new, lightweight, permanent magnet material. J Appl Phys 32(3):S190–S191

    Article  Google Scholar 

  98. Balamurugan B et al (2012) Prospects for nanoparticle-based permanent magnets. Scr Mater 67(6):542–547

    Article  Google Scholar 

  99. Giner-Casares JJ et al (2016) Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater Today 19(1):19–28

    Article  Google Scholar 

  100. Arruebo M et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  101. Chomoucka J et al (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62(2):144–149

    Article  Google Scholar 

  102. Mamiya H (2013) Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J Nanomater 2013:17

    Article  Google Scholar 

  103. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915

    Article  Google Scholar 

  104. Knobel M et al (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8(6):2836–2857

    Google Scholar 

  105. Suto M et al (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321(10):1493–1496

    Article  Google Scholar 

  106. Hergt R, Andrä W (2007) Magnetic hyperthermia and thermoablation. In: Magnetism in medicine, Wiley, New York, pp 550–570

    Google Scholar 

  107. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  Google Scholar 

  108. Kim D-H, Nikles DE, Brazel CS (2010) Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3(7):4051–4065

    Article  Google Scholar 

  109. Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293(1):334–340

    Article  Google Scholar 

  110. Kallumadil M et al (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321(10):1509–1513

    Article  Google Scholar 

  111. Habib AH et al (2008) Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys 103(7):07A307

    Google Scholar 

  112. Cheon JW, Jang JT (2011) Heat generating nanomaterials. Google patents

    Google Scholar 

  113. Ivkov R et al (2014) A process for making iron oxide nanoparticle preparations for cancer hyperthermia. Google patents

    Google Scholar 

  114. Coey JMD (2002) Permanent magnet applications. J Magn Magn Mater 248(3):441–456

    Article  Google Scholar 

  115. Hirotoshi F, Hiroshi I (1992) Effect of intergrain exchange interaction on magnetic properties in isotropic Nd-Fe-B magnets. Jpn J Appl Phys 31(5R):1347

    Google Scholar 

  116. Kronmüller H et al (1996) Micromagnetism and microstructure of hard magnetic materials. J Phys D Appl Phys 29(9):2274

    Article  Google Scholar 

  117. Shen J et al (2015) Synthesis and characterization of rare-earth-free magnetic manganese bismuth nanocrystals. RSC Adv 5(8):5567–5570

    Article  Google Scholar 

  118. Zeng H et al (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420(6914):395–398

    Article  Google Scholar 

  119. Skomski R, Coey JMD (1993) Giant energy product in nanostructured two-phase magnets. Phys Rev B 48(21):15812–15816

    Article  Google Scholar 

  120. Imran K, Jisang H (2014) Potential rare earth free permanent magnet: interstitial boron doped FeCo. J Phys D Appl Phys 47(41):415002

    Article  Google Scholar 

  121. Sun X et al (2012) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12(1):246–251

    Article  Google Scholar 

  122. López-Ortega A et al (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27(11):4048–4056

    Article  Google Scholar 

  123. Bedanta S et al (2013) Magnetic nanoparticles: a subject for both fundamental research and applications. J Nanomater 2013:22

    Google Scholar 

  124. Pedro T et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182

    Article  Google Scholar 

  125. Pankhurst QA et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001

    Article  Google Scholar 

  126. Hao R et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742

    Article  Google Scholar 

  127. Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20(40):8760–8767

    Article  Google Scholar 

  128. Weissleder R et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152(1):167–173

    Article  Google Scholar 

  129. Yang SP et al (2013) Method for preparing core-shell structure ferrite magnetic nanocomposite used in NMR imaging contrast agent

    Google Scholar 

  130. Robert D et al (2010) Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials 31(7):1586–1595

    Article  Google Scholar 

  131. Weissleder R, Lee H, Yoon TJ (2013) Magnetic nanoparticles

    Google Scholar 

  132. Falk RB (1966) Magnetic recording tape with magnetic layer of oxide coated iron-cobalt alloy particles in a binder. US

    Google Scholar 

  133. Terry WM (2005) Ultimate limits to thermally assisted magnetic recording. J Phys Condens Matter 17(7):R315

    Article  Google Scholar 

  134. Richter HJ (2007) The transition from longitudinal to perpendicular recording. J Phys D Appl Phys 40(9):R149

    Article  Google Scholar 

  135. Hans Jürgen R (1999) Recent advances in the recording physics of thin-film media. J Phys D Appl Phys 32(21):R147

    Article  Google Scholar 

  136. Mallinson J (1969) Maximum signal-to-noise ratio of a tape recorder. IEEE Trans Magn 5(3):182–186

    Article  Google Scholar 

  137. Mallinson JC (1991) A new theory of recording media noise. IEEE Trans Magn 27(4):3519–3531

    Article  Google Scholar 

  138. Victora RH, Shen X (2008) Exchange coupled composite media. In: Proceedings of the IEEE, vol 96(11), pp 1799–1809

    Google Scholar 

  139. Misra DK (2011) FeRh-FePt core shell nanostructure for ultra-high density storage media: US

    Google Scholar 

  140. Hattori Y (2011) Magnetic particle and method of preparing the same, and magnetic recording medium: US

    Google Scholar 

  141. Shukla N et al (2013) Method of producing self-assembled cubic FePt nanoparticles and apparatus using same: US

    Google Scholar 

  142. Luo J et al (2016) Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett 11(1):1–14

    Article  Google Scholar 

  143. Cheng Y et al (2010) Preparation, magnetic and microwave absorption properties of La0.5Sr0.5MnO3/La(OH)3 composites. Mater Res Bull 45(6):663–667

    Article  Google Scholar 

  144. Gairola SP et al (2010) Enhanced microwave absorption properties in polyaniline and nano-ferrite composites in X-band. Synth Met 160:2315–2318

    Article  Google Scholar 

  145. Li Y et al (2015) Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. J Mater Chem C 3(36):9276–9282

    Article  Google Scholar 

  146. Chang H-Y, Cheng S-Y, Sheu C-I (2008) Microwave sintering of ferroelectric PZT thick films. Mater Lett 62(21–22):3620–3622

    Article  Google Scholar 

  147. Fan M, He ZF, Pang H (2013) Microwave absorption enhancement of CIP/PANI composites. Synth Met 166:1–6

    Article  Google Scholar 

  148. Zhu C-L et al (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114(39):16229–16235

    Article  Google Scholar 

  149. Kim SW, Park JH, Kim YB (2010) Magnetic composite powders, preparing method thereof and electromagnetic noise suppressing films comprising same: US

    Google Scholar 

  150. Hennig I et al (2013) Microwave absorbing composition: US

    Google Scholar 

  151. Imaoka N et al (2008) Magnetic material for high frequency wave, and method for production thereof

    Google Scholar 

  152. Sayan C et al (2013) Magnetic entropy change in core/shell and hollow nanoparticles. J Phys Condens Matter 25(42):426003

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly sponsored by CAPES, CNPq, and Funcap (Brazilian agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. A. Fechine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Freire, T.M., Galvão, W.S., Freire, R.M., Fechine, P.B.A. (2017). Bimagnetic Core/Shell Nanoparticles: Current Status and Future Possibilities. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_3

Download citation

Publish with us

Policies and ethics