Skip to main content

Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment: Factors Affecting Heat Generation Efficiency

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

Hyperthermic treatment of cancer by magnetic nanoparticles has shown promising results in recent years. Magnetic nanoparticles in the form of stable fluids can be transported to the effected cells noninvasively through a variety of drug delivery routes. Upon stimulation by a radio frequency magnetic field, these nanoparticles induce local heat remotely, which causes the temperature in organs and tissues containing tumoral cells to rise and causes the death of infected cells. The heat generation mainly results from three independent physical mechanisms, Néel relaxation, Brownian relaxation, and hysteresis loss. The involvement of each mechanism firmly depends on the crystal size, crystal structure, morphology, and degree of aggregation of the nanoparticles. Nanostructures based on iron oxide and its relevant ferrites, such as cobalt ferrite and nickel ferrite, in a range of a few nanometers, showing superparamagnetic properties have been investigated extensively for magnetic hyperthermia. This chapter will cover different aspects of magnetic hyperthermia from a material science point of view, including mechanisms, materials, crystal size, shape, the effect of architecture on heat generation efficiency, and practical procedures to measure the therapeutic properties of fluidic nanoparticles preinjection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caster JM, Patel AN, Zhang T, Wang A (2016) Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology (In press)

    Google Scholar 

  2. Del Burgo LS, Hernãindez RM, Orive G, Pedraz JL (2014) Nanotherapeutic approaches for brain cancer management. Nanomedicine: Nanotechnology, Biology and Medicine 10: e905–e919

    Article  Google Scholar 

  3. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133

    Article  Google Scholar 

  4. Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354:163–172

    Article  Google Scholar 

  5. Deraco M, Kusamura S, Virzì S, Puccio F, Macrì A, Famulari C, Solazzo M, Bonomi S, Iusco DR, Baratti D (2011) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: multi-institutional phase-II trial. Gynecol Oncol 122:215–220

    Article  Google Scholar 

  6. Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A (2015) Magnetic nanoparticles in cancer theranostics. Theranostics 5:1249

    Article  Google Scholar 

  7. Casanovas O (2012) Cancer: Limitations of therapies exposed. Nature 484:44–46

    Article  Google Scholar 

  8. Garattini S, Bertele V (2002) Efficacy, safety, and cost of new anticancer drugs. Br Med J 325:269

    Article  Google Scholar 

  9. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med 7:987–989

    Article  Google Scholar 

  10. Van der Seldt AA, Lubberink M, Bahce I, Walraven M, de Boer MP, Greuter HN, Hendrikse NH, Eriksson J, Windhorst AD, Postmus PE, Verheul HM, Serné EH, Lammertsma AA, Smit EF (2012) Rapid decrease in delivery of chemotherapy to tumors after Anti-VEGF therapy: Implications for scheduling of anti-angiogenic drugs. Cancer Cell 21:82–91

    Article  Google Scholar 

  11. Sardari D, Verga N (2011) Cancer treatment with hyperthermia. In: Özdemir Ö (ed) Current cancer treatment-novel beyond conventional approaches. InTech, Istanbul, pp 455–475

    Google Scholar 

  12. Bush W (1886) Uber den Finfluss wetchen heftigere Eryspelen zuweilen auf organlsierte Neubildungen dusuben. Verh Natruch Preuss Rhein Westphal 23:28–30

    Google Scholar 

  13. Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201:413–419

    Article  Google Scholar 

  14. Banobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Practical Oncol Radiother 18:397–400

    Article  Google Scholar 

  15. Chichel A, Skowronek J, Kubaszewska M, Kanikowski M (2007) Hyperthermia description of a method and a review of clinical applications. Rep Practical Oncol Radiother 12:267–275

    Article  Google Scholar 

  16. Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14:572–594

    Article  Google Scholar 

  17. Wust P, Nadobny J, Fahling H, Riess H, Koch K, John W, Felix R (1991) Determinant factors and disturbances in controlling power distribution patterns by the hyperthermia-ring system BSD-2000. 2. Measuring techniques and analysis. Strahlenther Onkol 167:172–180

    Google Scholar 

  18. Andreu I, Natividad E (2013) Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia 29:739–751

    Article  Google Scholar 

  19. Khushrushahi SR (2005) A quantitative design and analysis of magnetic nanoparticle heating systems. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  20. Presman A (2013) Electromagnetic fields and life. Springer, Berlin

    Google Scholar 

  21. Cavaliere R, Giogatto BC, Giovanella BC (1967) Selective heat sensitivity of cancer cells. Cancer 20:1351–1381

    Article  Google Scholar 

  22. Levine EM, Robbins EB (1970) Differential temperature sensitivity of normal and cancer cells in culture. J Cell Physiol 76:373–379

    Article  Google Scholar 

  23. Diederich CJ (2005) Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia 21:745–753

    Article  Google Scholar 

  24. Gneveckow U, Jordan A, Scholz R, Brüss V, Waldöfner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P (2004) Description and characterization of the novel hyperthermia-and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 31:1444–1451

    Article  Google Scholar 

  25. Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 29:790–800

    Article  Google Scholar 

  26. Valdagni R, Amichetti M (1994) Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymphnodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys 28:163–169

    Article  Google Scholar 

  27. Abdeen S, Praseetha PK (2013) Diagnostics and treatment of metastatic cancers with magnetic nanoparticles. J Nanomedicine Biosci Discov 2013

    Google Scholar 

  28. Falk MH, Issels RD (2001) Hyperthermia in oncology. Int J Hyperthermia 17:1–18

    Article  Google Scholar 

  29. Jia D, Liu J (2010) Current devices for high-performance whole-body hyperthermia therapy. Expert Rev Med Devices 7:407–423

    Article  Google Scholar 

  30. Kim DH, Lee SH, Im KH, Kim KN, Kim KM, Shim IB, Lee MH, Lee YK (2006) Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies. Curr Appl Phys 6:e242–e246

    Article  Google Scholar 

  31. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596

    Article  Google Scholar 

  32. Bai L-Z, Zhao D-L, Xu Y, Zhang J-M, Gao Y-L, Zhao L-Y, Tang J-T (2012) Inductive heating property of graphene oxide-Fe3O4 nanoparticles hybrid in an AC magnetic field for localized hyperthermia. Mater Lett 68:399–401

    Article  Google Scholar 

  33. Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, Del Puerto Morales M, Mozaffari M (2012) Synthesis of aqueous ferrofluids of Zn x Fe3O4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications. J. Magn. Magn. Mater. 324:2211–2217

    Article  Google Scholar 

  34. Cantillon MP, Wald LL, Zahn M, Adalsteinsson E (2010) Proposing magnetic nanoparticle hyperthermia in low field MRI. Concepts in Magnetic Resonance Part A 36:36–47

    Article  Google Scholar 

  35. Fathi Karkan S, Mohammadhosseini M, Panahi Y, Milani M, Zarghami N, Akbarzadeh A, Abasi E, Hosseini A, Davaran S (2016) Magnetic nanoparticles in cancer diagnosis and treatment: a review. Artif Cells Nanomed Biotechnol:1–5

    Google Scholar 

  36. Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PI (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1:17–32

    Article  Google Scholar 

  37. Goya GF, Grazu V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Current Nanoscience 4:1–16

    Article  Google Scholar 

  38. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  Google Scholar 

  39. Pankhurst QA, Connolly J, Jones SK, Dobson JJ (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  Google Scholar 

  40. Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11:996–1004

    Article  Google Scholar 

  41. Peng X-H, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3:311–321

    Google Scholar 

  42. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021

    Article  Google Scholar 

  43. Liu X, Chen Y, Li H, Huang N, Jin Q, Ren K, Ji J (2013) Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 7:6244–6257

    Article  Google Scholar 

  44. Alonso J, Khurshid H, Devkota J, Nemati Z, Khadka NK, Srikanth H, Pan J, Phan M-H (2016) Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J Appl Phys 119:083904

    Article  Google Scholar 

  45. Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, Brazdeikis A, Decuzzi P (2013) Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One 8:e57332

    Article  Google Scholar 

  46. Haring M, Schiller J, Mayr J, Grijalvo S, Eritja R, Díaz DD (2015) Magnetic gel composites for hyperthermia cancer therapy. Gels 1:135–161

    Article  Google Scholar 

  47. Hoopes PJ, Petryk AA, Gimi B, Giustini AJ, Weaver JB, Bischof J, Chamberlain R, Garwood M (2012) In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution. In: SPIE Medical Imaging. International Society for Optics and Photonics, p 83170R-83170R-83179.

    Google Scholar 

  48. Stelter L, Pinkernelle JG, Michel R, Schwartlander R, Raschzok N, Morgul MH, Koch M, Denecke T, Ruf J, Baumler H (2010) Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3 T MRI, small animal PET, and fluorescence imaging. Mol Imaging Biol 12:25–34

    Article  Google Scholar 

  49. Wust P, Gneveckow U, Johannsen M, Böhmer D, Henkel T, Kahmann F, Sehouli J, Felix R (2006) Magnetic nanoparticles for interstitial thermotherapyâ€feasibility, tolerance and achieved temperatures. Int J Hyperthermia 22:673–685

    Article  Google Scholar 

  50. Pöttler M, Staicu A, Zaloga J, Unterweger H, Weigel B, Schreiber E, Hofmann S, Wiest I, Jeschke U, Alexiou C (2015) Genotoxicity of superparamagnetic iron oxide nanoparticles in granulosa cells. Int J Mol Sci 16:26280–26290

    Article  Google Scholar 

  51. Ahmed M, De Rosales RT, Douek M (2013) Preclinical studies of the role of iron oxide magnetic nanoparticles for nonpalpable lesion localization in breast cancer. J Surg Res 185:27–35

    Article  Google Scholar 

  52. Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171

    Article  Google Scholar 

  53. Taratula O, Dani RK, Schumann C, Xu H, Wang A, Song H, Dhagat P, Taratula O (2013) Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int J Pharm 458:169–180

    Article  Google Scholar 

  54. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635

    Article  Google Scholar 

  55. Shreshtha PP, Mohite SS, Jadhav MGK (2015) Review on thermal seeds in magnetic hyperthermia therapy. IJITR 3:2283–2287

    Google Scholar 

  56. Hergt R, Andra W, D’ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34:3745–3754

    Article  Google Scholar 

  57. Ramprasad R, Zurcher P, Petras M, Miller M, Renaud P (2004) Magnetic properties of metallic ferromagnetic nanoparticle composites. J Appl Phys 96:519–529

    Article  Google Scholar 

  58. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370–374

    Article  Google Scholar 

  59. Andra W, Nowak H (2007) Magnetism in medicine: a handbook. Wiley, New York

    Google Scholar 

  60. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GVE (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    Article  Google Scholar 

  61. Burrows F, Parker C, Evans RFL, Hancock Y, Hovorka O, Chantrell RW (2010) Energy losses in interacting fine-particle magnetic composites. J Phys D Appl Phys 43:474010

    Article  Google Scholar 

  62. Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, Van Lierop J, Grüttner C, Ivkov R (2009) Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20:395103

    Article  Google Scholar 

  63. Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919

    Article  Google Scholar 

  64. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 20:385214

    Article  Google Scholar 

  65. Gittleman JI, Abeles B, Bozowski S (1974) Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films. Phys Rev B 9:3891

    Article  Google Scholar 

  66. Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (2009) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 25:499–511

    Article  Google Scholar 

  67. Lu AH, Salabas EEL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  68. Kurti N (1988) Selected works of louis neel. CRC Press, Boca Raton, FL

    Google Scholar 

  69. Neel L (1950) Theorie du trainage magnetique des substances massives dans le domaine de Rayleigh. Journal de Physique et le Radium 11:49–61

    Article  Google Scholar 

  70. Brown WF Jr (1963) Thermal fluctuations of a single domain particle. J Appl Phys 34: 1319–1320

    Article  Google Scholar 

  71. Deissler RJ, Wu Y, Martens MA (2014) Dependence of brownian and neel relaxation times on magnetic field strength. Med Phys 41:012301

    Article  Google Scholar 

  72. Lima E Jr, Torres TE, Rossi LM, Rechenberg HR, Berquo TS, Ibarra A, Marquina C, Ibarra MR, Goya GF (2013) Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J Nanopart Res 15:1–11

    Article  Google Scholar 

  73. Zhang X, Chen S, Wang H-M, Hsieh S-L, Wu C-H, Chou H-H, Hsieh S (2010) Role of neel and brownian relaxation mechanisms for water-based Fe3O4 nanoparticle ferrofluids in hyperthermia. Biomed Eng: Appl Basis Commun 22:393–399

    Google Scholar 

  74. Motoyama J, Hakata T, Kato R, Yamashita N, Morino T, Kobayashi T, Honda H (2010) Size dependent heat generation of magnetic nanoparticles under AC magnetic field for cancer therapy. In: Animal cell technology: Basic & applied aspects. Springer, pp 415–421

    Google Scholar 

  75. Guibert CM, Dupuis V, Peyre V, Fresnais JRM (2015) Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C 119:28148–28154

    Article  Google Scholar 

  76. Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89

    Article  Google Scholar 

  77. Thanh NTK (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC press, Boca Raton, FL

    Book  Google Scholar 

  78. Yahya N (2011) Carbon and oxide nanostructures: synthesis, characterisation and applications. Springer, Berlin

    Google Scholar 

  79. Basti H, Hanini A, Levy M, Tahar LB, Herbst F, Smiri LS, Kacem K, Gavard J, Wilhelm C, Gazeau F (2014) Size tuned polyol-made Zn0. 9M0.1Fe2O4 (M=Mn, Co, Ni) ferrite nanoparticles as potential heating agents for magnetic hyperthermia: from synthesis control to toxicity survey. Mater Res Exp 1:045047

    Article  Google Scholar 

  80. Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, Grenèche JM, Chau F, Ammar S (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chem Mater 22:5420–5429

    Article  Google Scholar 

  81. Cespedes E, Byrne JM, Farrow N, Moise S, Coker VS, Bencsik M, Lloyd JR, Telling ND (2014) Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications. Nanoscale 6:12958–12970

    Article  Google Scholar 

  82. Hanini A, Lartigue L, Gavard J, Schmitt A, Kacem K, Wilhelm C, Gazeau F, Chau F, Ammar S (2016) Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following Î3-Fe2O3 NPs internalization and magnetic field application. RSC Advances 6:15415–15423

    Article  Google Scholar 

  83. Lin M, Huang J, Sha M (2014) Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment. J Nanosci Nanotechnol 14:792–802

    Article  Google Scholar 

  84. Veverka M, Zãvta K, Kaman O, Veverka P, Knížek K, Pollert E, Burian M, Kašpar P (2014) Magnetic heating by silica-coated Co-Zn ferrite particles. J Phys D Appl Phys 47:065503

    Article  Google Scholar 

  85. Hanini A, Lartigue L, Gavard J, Kacem K, Wilhelm C, Gazeau F, Chau FO, Ammar S (2016) Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. J. Magn. Magn. Mater. 416:315–320

    Article  Google Scholar 

  86. Wijaya A, Brown KA, Alper JD, Hamad-Schifferli K (2007) Magnetic field heating study of Fe-doped Au nanoparticles. J Magn Magn Mater 309:15–19

    Article  Google Scholar 

  87. Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7:1443–1459

    Article  Google Scholar 

  88. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293:483–496

    Article  Google Scholar 

  89. Hiergeist R, Andrã W, Buske N, Hergt R, Hilger I, Richter U, Kaiser W (1999) Application of magnetite ferrofluids for hyperthermia. J Magn Magn Mater 201:420–422

    Article  Google Scholar 

  90. Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321: 1947–1950

    Article  Google Scholar 

  91. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091

    Article  Google Scholar 

  92. Lartigue LN, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri J-C, Bazzi R, Brougham DF, Wilhelm C, Gazeau F (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949

    Article  Google Scholar 

  93. Kolosnjaj-Tabi J, Di Corato R, Lartigue LN, Marangon I, Guardia P, Silva AKA, Luciani N, Clément O, Flaud P, Singh JV (2014) Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano 8:4268–4283

    Article  Google Scholar 

  94. Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411

    Article  Google Scholar 

  95. Gandhi S, Arami H, Krishnan KM (2016) Detection of cancer-specific proteases using magnetic relaxation of peptide-conjugated nanoparticles in biological environment. Nano Lett

    Google Scholar 

  96. Lowry GV, Gregory KB, Apte SS, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  Google Scholar 

  97. Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR, Xia T, Pokhrel S, Maìdler L, Gardea-Torresdey JL (2011) Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5:13–20

    Article  Google Scholar 

  98. Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  Google Scholar 

  99. Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Schoenfeld D, Meng H, Lin S, Wang X (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–1235

    Article  Google Scholar 

  100. Kolosnjaj-Tabi J, Lartigue LN, Javed Y, Luciani N, Pellegrino T, Wilhelm C, Alloyeau D, Gazeau F (2016) Biotransformations of magnetic nanoparticles in the body. Nano Today 11:280–284

    Article  Google Scholar 

  101. Koksharov YA (2009) Magnetism of nanoparticles: Effects of size, shape, and interactions. In: Gubin SP (ed) Magnetic nanoparticles. Wiley-VCH, pp 197–254

    Google Scholar 

  102. Alloyeau D, Dachraoui W, Javed Y, Belkahla H, Wang G, Lecoq HLN, Ammar S, Ersen O, Wisnet A, Gazeau F (2015) Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett 15:2574–2581

    Article  Google Scholar 

  103. Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    Article  Google Scholar 

  104. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33:1015–1021

    Article  Google Scholar 

  105. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    Article  Google Scholar 

  106. Titirici M-M, Antonietti M, Thomas A (2006) A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18:3808–3812

    Article  Google Scholar 

  107. Cheng C, Xu F, Gu H (2011) Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J Chem 35:1072–1079

    Article  Google Scholar 

  108. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  109. Hoskins C, Min Y, Gueorguieva M, Mcdougall C, Volovick A, Prentice P, Wang Z, Melzer A, Cuschieri A, Wang L (2012) Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J Nanobiotechnol 10:1

    Article  Google Scholar 

  110. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107

    Article  Google Scholar 

  111. Salvador-Morales C, Gao W, Ghatalia P, Murshed F, Aizu W, Langer R, Farokhzad OC (2009) Multifunctional nanoparticles for prostate cancer therapy. Expert Rev Anticancer Ther 9: 211–221

    Article  Google Scholar 

  112. Bergey EJ, Levy L, Wang X, Krebs LJ, Lal M, Kim K-S, Pakatchi S, Liebow C, Prasad PN (2002) DC magnetic field induced magnetocytolysis of cancer cells targeted by LH-RH magnetic nanoparticles in vitro. Biomed Microdevices 4:293–299

    Article  Google Scholar 

  113. Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R198

    Article  Google Scholar 

  114. Briley-Saebo KC, Johansson LO, Hustvedt SO, Haldorsen AG, Bjørnerud A, Fayad ZA, Ahlstrom HK (2006) Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism. Invest Radiol 41:560–571

    Article  Google Scholar 

  115. Kolosnjaj-Tabi J, Javed Y, Lartigue LN, Volatron J, Elgrabli D, Marangon I, Pugliese G, Caron B, Figuerola A, Luciani N (2015) The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9:7925–7939

    Article  Google Scholar 

  116. Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron FO (2011) Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32:3988–3999

    Article  Google Scholar 

  117. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  Google Scholar 

  118. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc Lond A: Math Phys Eng Sci 368: 1333–1383

    Article  Google Scholar 

  119. Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L (2012) Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res 14:1–10

    Article  Google Scholar 

  120. Ditto AJ, Shah KN, Robishaw NK, Panzner MJ, Youngs WJ, Yun YH (2012) The Interactions between l-tyrosine based nanoparticles decorated with folic acid and cervical cancer cells under physiological flow. Mol Pharm 9:3089–3098

    Article  Google Scholar 

  121. Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 3:314–320

    Article  Google Scholar 

  122. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  123. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  Google Scholar 

  124. Mohammad F, Balaji G, Weber A, Uppu RM, Kumar CSSR (2010) Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles. J Phys Chem C 114:19194–19201

    Article  Google Scholar 

  125. Javed Y, Lartigue LN, Hugounenq P, Vuong QL, Gossuin Y, Bazzi R, Wilhelm C, Ricolleau C, Gazeau F, Alloyeau D (2014) Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating. Small 10:3325–3337

    Article  Google Scholar 

  126. Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504

    Article  Google Scholar 

  127. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  Google Scholar 

  128. Shilo M, Sharon A, Baranes K, Motiei M, Lellouche J-PM, Popovtzer R (2015) The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J Nanobiotechnol 13:1

    Article  Google Scholar 

  129. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats.

    Google Scholar 

  130. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  Google Scholar 

  131. Czuprynski CJ (2016) Opsonization and Phagocytosis. Encyclopedia of Immunotoxicology: 674–676

    Google Scholar 

  132. Salmaso S, Caliceti P (2013) Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv 2013:19

    Article  Google Scholar 

  133. Al-Hanbali O, Rutt KJ, Sarker DK, Hunter AC, Moghimi SM (2006) Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J Nanosci Nanotechnol 6:3126–3133

    Article  Google Scholar 

  134. Jo DH, Kim JH, Lee TG, Kim JH (2015) Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed: Nanotechnol, Biol Med 11:1603–1611

    Article  Google Scholar 

  135. Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  Google Scholar 

  136. Rahman M, Laurent S, Tawil N, Yahia LH, Mahmoudi M (2013) Nanoparticle and protein corona. In: Protein-nanoparticle interactions. Springer, pp 21–44

    Google Scholar 

  137. Dell’orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 5:e10949

    Article  Google Scholar 

  138. Bargheer D, Nielsen J, Gébel G, Heine M, Salmen SC, Stauber R, Weller H, Heeren J, Nielsen P (2015) The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol 6:36–46

    Article  Google Scholar 

  139. Foroozandeh P, Aziz AA (2015) Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res Lett 10:1–12

    Article  Google Scholar 

  140. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    Article  Google Scholar 

  141. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:1

    Article  Google Scholar 

  142. Cummings BS, Wills LP, Schnellmann RG (2012) Measurement of cell death in Mammalian cells. Current Protocols in Pharmacology 12.18. 11–12.18. 24.

    Google Scholar 

  143. Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, Dinda AK (2009) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989

    Google Scholar 

  144. Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21:13388–13398

    Article  Google Scholar 

  145. Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 268:33–39

    Article  Google Scholar 

  146. Zhao D-L, Wang X-X, Zeng X-W, Xia Q-S, Tang J-T (2009) Preparation and inductive heating property of Fe3O4 chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. J Alloys Compd 477:739–743

    Article  Google Scholar 

  147. Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB (2014) Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater Sci Eng C 42:52–63

    Article  Google Scholar 

  148. Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C (2013) Magnetic fluid hyperthermia: Advances, challenges, and opportunity. Int J Hyperthermia 29:706–714

    Article  Google Scholar 

  149. Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374

    Article  Google Scholar 

  150. Kida Y, Ishiguri H, Ichimi K, Kobayashi T (1990) Hyperthermia of metastatic brain tumor with implant heating system: a preliminary clinical results. No shinkei geka. Neurol Surg 18:521–526

    Google Scholar 

  151. Kobayashi T, Kida Y, Matsui M, Amemiya Y (1990) Interstitial hyperthermia of malignant brain tumors using implant heating system (IHS). No shinkei geka. Neurol Surg 18:247–252

    Google Scholar 

  152. Luo S, Wang LF, Ding WJ, Wang H, Zhou JM, Jin HK, Su SF, Ouyang WW (2014) Clinical trials of magnetic induction hyperthermia for treatment of tumours. OA Cancer 2:2

    Google Scholar 

  153. Hentschel M, Mirtsch S, Jordan A, Wust P, Vogl TH, Semmler W, Wolf KJ, Felix R (1997) Heat response of HT29 cells depends strongly on perfusion–A 31P NMR spectroscopy, HPLC and cell survival analysis. Int J Hyperthermia 13:69–82

    Article  Google Scholar 

  154. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Von Deimling A, Waldoefner N, Felix R (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60

    Article  Google Scholar 

  155. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  Google Scholar 

  156. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1662

    Article  Google Scholar 

  157. Gao F, Yan Z, Zhou J, Cai Y, Tang J (2012) Methotrexate-conjugated magnetic nanoparticles for thermochemotherapy and magnetic resonance imaging of tumor. J Nanopart Res 14:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Javed, Y., Ali, K., Jamil, Y. (2017). Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment: Factors Affecting Heat Generation Efficiency. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_11

Download citation

Publish with us

Policies and ethics