Skip to main content

Thermal Structure

  • Chapter
  • First Online:
  • 764 Accesses

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

The ground surface temperature, the geothermal flow and the rock radiogenic heat provide evidence of the heat transfer processes and allow the determination of the thermal structure of the lithosphere. This chapter describes the fluctuation in the subsurface temperature, caused by ground surface temperature variations, and the main heat sources of geothermal flow. The primordial heat and cooling of the Earth are outlined as well as the radiogenic heat as a function of time and the heat originated by transient perturbations yielded by tectonothermal processes. The intersection between geotherms and the upper mantle solidus supplies an estimate of the thickness of the continental plate. By modelling the oceanic plate cooling as a semi-infinite solid initially at uniform temperature, the temperature and thickness of the lithosphere can be assessed together with the geothermal flow and the seafloor depth. In addition to the thermal structure of the deeper interior, this chapter also gives an insight into mantle convection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allègre CJ (1982) Chemical geodynamics. Tectonophysics 81:109–132

    Article  Google Scholar 

  • Allen PA, Allen JR (2005) Basin analysis: principle and applications, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Anderson DL (1989) Theory of the Earth. Blackwell, Oxford

    Google Scholar 

  • Beardsmore GR, Cull JP (2001) Crustal heat flow: a guide to measurement and modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brewer J (1981) Thermal effects of thrust faulting. Earth Planet Sci Lett 56:233–244

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1986) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Chiozzi P (1995) Subsidenza, regime termico e domini crostali nel Mediterraneo nordoccidentale. PhD Thesis, Genoa University, Italy

    Google Scholar 

  • Gilvarry JJ (1956) Grüneisen’s law and the fusion curve at high pressure. Phys Res 102:317–325

    Article  Google Scholar 

  • Jessop AM (1990) Thermal geophysics. Elsevier, Amsterdam

    Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sc Lett 40:25–32

    Article  Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–827

    Article  Google Scholar 

  • Pasquale V (1987) Possible thermal structure of the eastern part of the Central Alps. Nuovo Cimento 10C:129–141

    Article  Google Scholar 

  • Pasquale V (2015) Geofisica. Edizioni Culturali Internazionali Genova (ECIG), 2nd edn. Genova

    Google Scholar 

  • Pasquale V, Cabella C, Verdoya M (1990) Deep temperatures and lithospheric thickness along the European Geotraverse. Tectonophysics 176:1–11

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (1995) On the heat flux related to stretching in the NW-Mediterranean continental margins. Studia Geoph Geod 39:389–404

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (1996a) Climatic signal from underground temperatures. International conference on Alpine meteorology, Hydrometeorological Institute of Slovenia, Bled, pp 201−208

    Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (1996b) Heat flux and timing of the drifting stage in the Ligurian-Provençal basin (NW Mediterranean). J Geodyn 21:205–222

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (1996c) Some geophysical constraints to dynamic processes in the Southwestern Mediterranean. Ann Geofis 39:1185–1200

    Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (1998) Climate change from meteorological observations and underground temperature in Northern Italy. Studia Geoph Geod 42:30–40

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (1999) Thermal state and deep earthquakes in the Southern Tyrrhenian. Tectonophysics 306:435–448

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (2005) Thermal structure of the Ionian slab. Pure Appl Geophys 162:967–986

    Article  Google Scholar 

  • Pasquale V, Chiozzi P, Verdoya M (2010) Tectonothermal processes and mechanical strength in a recent orogenic belt: Northern Apennines. J Geophys Res 115:B03302. doi:10.1029/B006567

    Article  Google Scholar 

  • Pasquale V, Chiozzi P, Verdoya M, Gola G (2012) Heat flow in the Western Po Basin and the surrounding orogenic belts. Geophys J Int 190:8–22

    Article  Google Scholar 

  • Poirier JP (1991) Introduction to the physics of the Earth’s interior. Cambridge University Press, Cambridge

    Google Scholar 

  • Pollack HV, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Sbrana F, Bossolasco M (1952) Sul regime termico degli strati superiori della crosta terrestre. Geofis Pura Appl 23:21–26

    Article  Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through the oceanic and continental crust and the heat loss of the Earth. Res Geophys Space Phys 18:269–311

    Article  Google Scholar 

  • Schön J (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Handbook of geophysical exploration, vol 18. Redwood Books, Trowbridge

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stacey FD (1992) Physics of the Earth, 3rd edn. Brookfield Press, Brisbane

    Google Scholar 

  • Stein C, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–128

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics—application of continuum physics to geological problems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Verhoogen J (1980) Energetics of the Earth. National Academy of Sciences, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Pasquale .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Pasquale, V., Verdoya, M., Chiozzi, P. (2017). Thermal Structure. In: Geothermics. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-52084-1_3

Download citation

Publish with us

Policies and ethics