Skip to main content

Learning and Recognition Methods for Image Search and Video Retrieval

  • Conference paper
  • First Online:
Recent Advances in Intelligent Image Search and Video Retrieval

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 121 ))

Abstract

Effective learning and recognition methods play an important role in intelligent image search and video retrieval. This chapter therefore reviews some popular learning and recognition methods that are broadly applied for image search and video retrieval . First some popular deep learning methods are discussed, such as the feedforward deep neural networks , the deep autoencoders , the convolutional neural networks, and the Deep Boltzmann Machine (DBM) . Second, Support Vector Machine (SVM), which is one of the popular machine learning methods, is reviewed. In particular, the linear support vector machine, the soft-margin support vector machine, the non-linear support vector machine , the simplified support vector machine , the efficient Support Vector Machine (eSVM) , and the applications of SVM to image search and video retrieval are discussed. Finally, other popular kernel methods and new similarity measures are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpaydin, E.: Introduction to machine learning. The MIT Press, Cambridge (2010)

    Google Scholar 

  2. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. J. Mach. Learn. Res. (Proceedings of ICML unsupervised and transfer learning) 27, 37–50 (2011)

    Google Scholar 

  3. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Google Scholar 

  5. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as generative models. Adv, Neural Inf. Process. Syst. 26, 899–907 (2013)

    Google Scholar 

  6. Beveridge, J., Givens, G., Phillips, P., Draper, B.: Factors that influence algorithm performance in the face recognition grand challenge. Comput. Vis. Image Underst. 113(6), 750–762 (2009)

    Article  Google Scholar 

  7. Brodatz, P.: Textures: a photographic album for artists and designers. Dover, New York (1966)

    Google Scholar 

  8. Burges, C.: Simplified support vector decision rule. In: Proceedings of the Thirteenth International Conference on Machine Learning (ICML’96), Bari, Italy, July 3–6, 1996 (1996)

    Google Scholar 

  9. Chambon, S., Crouzil, A.: Similarity measures for image matching despite occlusions in stereo vision. Pattern Recognit. 44(9), 2063–2075 (2011)

    Article  Google Scholar 

  10. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  11. Chen, J., Chen, C.: Reducing SVM classification time using multiple mirror classifers. IEEE Trans. Syst. Man Cybern. 34(2), 1173–1183 (2004)

    Article  Google Scholar 

  12. Chen, S., Liu, C.: Eye detection using color information and a new efficient SVM. In: IEEE Fourth International Conference on Biometrics: Theory, Applications, and Systems (BATS’10), Washington DC, USA (2010)

    Google Scholar 

  13. Chen, S., Liu, C.: A new efficient SVM and its application to a real-time accurate eye localization system. In: International Joint Conference on Neural Networks, San Jose, California, USA (2011)

    Google Scholar 

  14. Chen, S., Liu, C.: Eye detection using discriminatory haar features and a new efficient SVM. Image Vis. Comput. 33(c), 68–77 (2015)

    Google Scholar 

  15. Chen, P., Lin, C., Scholkopf, B.: A tutorial on \(\upsilon \)-support vector machines. Appl. Stoch. Models Bus. Ind. 21, 111–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cooke, T.: Two variations on Fisher’s linear discriminant for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 268–273 (2002)

    Google Scholar 

  17. Corso, J.J., Alahi, A., Grauman, K., Hager, G.D., Morency, L.P., Sawhney, H., Sheikh, Y.: Video Analysis for Bodyworn Cameras in Law Enforcement. The Computing Community Consortium whitepaper (2015)

    Google Scholar 

  18. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  19. Dhanjal, C., Gunn, S., Shawe-Taylor, J.: Efficient sparse kernel feature extraction based on partial least squares. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1347–1361 (2009)

    Google Scholar 

  20. Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14, 1724–1733 (1997)

    Article  Google Scholar 

  21. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Aistats, vol. 15, p. 275 (2011)

    Google Scholar 

  22. Goodfellow, I., Mirza, M., Courville, A., Bengio, Y.: Multi-prediction deep boltzmann machines. In: Advances in Neural Information Processing Systems, pp. 548–556 (2013)

    Google Scholar 

  23. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning (2016). URL http://www.deeplearningbook.org (Book in preparation for MIT Press)

  24. Gundimada, S., Asari, V.: Facial recognition using multisensor images based on localized kernel eigen spaces. IEEE Trans. Image Process. 18(6), 1314–1325 (2009)

    Article  MathSciNet  Google Scholar 

  25. Guo, G., Zhang, H.J., Li, S.Z.: Distance-from-boundary as a metric for texture image retrieval. In: IEEE International Conference on Acoustics. Speech, and Signal Processing, vol. 3, pp. 1629–1632, Washington DC, USA (2001)

    Google Scholar 

  26. Haykin, S.: Neural Networks — A Comprehensive Foundation. Macmillan College Publishing Company, Inc., New York (1994)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  29. Herbrich, R.: Learning Kernel Classifiers: Theory and Algorithms. MIT Press, Cambridge (2002)

    Google Scholar 

  30. Hoi, C.H., Chan, C.H., Huang, K., Lyu, M.R., King, I.: Biased support vector machine for relevance feedback in image retrieval. In: 2004 IEEE International Joint Conference on Neural Networks, vol. 4, pp. 3189–3194 (2004)

    Google Scholar 

  31. Hong, P., Tian, Q., Huang, T.S.: Incorporate support vector machines to content-based image retrieval with relevance feedback. In: 2000 International Conference on Image Processing, vol. 3, pp. 750–753 (2000)

    Google Scholar 

  32. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: 10th European Conference on Machine Learning (1999)

    Google Scholar 

  33. Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990)

    Google Scholar 

  34. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105 (2012)

    Google Scholar 

  36. Lee, Y., Mangasarian, O.: RSVM: Reduced support vector machines. In: The First SIAM International Conference on Data Mining (2001)

    Google Scholar 

  37. Li, J., Allinson, N., Tao, D., Li, X.: Multitraining support vector machine for image retrieval. IEEE Trans. Image Process. 15(11), 3597–3601 (2006)

    Article  Google Scholar 

  38. Lin, K., Lin, C.: A study on reduced support vector machine. IEEE Trans. Neural Netw. 14(6), 1449–1559 (2003)

    Article  Google Scholar 

  39. Liu, C.: Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 572–581 (2004)

    Google Scholar 

  40. Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 725–737 (2006)

    Google Scholar 

  41. Liu, C.: The Bayes decision rule induced similarity measures. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1086–1090 (2007)

    Google Scholar 

  42. Liu, C.: Clarification of assumptions in the relationship between the bayes decision rule and the whitened cosine similarity measure. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1116–1117 (2008)

    Google Scholar 

  43. Liu, C.: Effective use of color information for large scale face verification. Neurocomputing 101, 43–51 (2013)

    Article  Google Scholar 

  44. Liu, C.: Discriminant analysis and similarity measure. Pattern Recognit. 47(1), 359–367 (2014)

    Article  Google Scholar 

  45. Liu, Z., Liu, C.: Fusion of color, local spatial and global frequency information for face recognition. Pattern Recognit. 43(8), 2882–2890 (2010)

    Article  MATH  Google Scholar 

  46. Liu, C., Mago, V. (eds.): Cross Disciplinary Biometric Systems. Springer, New York (2012)

    Google Scholar 

  47. Liu, X., Chen, W., Yuen, P., Feng, G.: Learning kernel in kernel-based LDA for face recognition under illumination variations. IEEE Signal Process. Lett. 16(12), 1019–1022 (2009)

    Article  Google Scholar 

  48. Ma, C., Randolph, M., Drish, J.: A support vector machines-based rejection technique for speech recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 381–384 (2001)

    Google Scholar 

  49. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30 (2013)

    Google Scholar 

  50. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mller, K.R.: Fisher discriminant analysis with kernels. In: Hu, Y.H., Larsen, J., Wilson, E., Douglas, S. (eds.) Neural Networks for Signal Processing IX, pp. 41–48. IEEE (1999)

    Google Scholar 

  51. Moghaddam, B.: Principal manifolds and probabilistic subspaces for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 780–788 (2002)

    Google Scholar 

  52. Nagaraja, G., Murthy, S.R., Deepak, T.: Content based video retrieval using support vector machine classification. In: 2015 IEEE International Conference on Applied and Theoretical Computing and Communication Technology, pp. 821–827 (2015)

    Google Scholar 

  53. Nakajima, C., Pontil, M., Poggio, T.: People recognition and pose estimation in image sequences. In: IEEE International Joint Conference on Neural Networks, vol. 4, pp. 189–194 (2000)

    Google Scholar 

  54. Nguyen, D., Ho, T.: An efficient method for simplifying support vector machines. In: International Conference on Machine Learning, Bonn, Germany (2005)

    Google Scholar 

  55. OToole, A.J., Phillips, P.J., Jiang, F., Ayyad, J., Penard, N., Abdi, H.: Face recognition algorithms surpass humans matching faces across changes in illumination. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1642–1646 (2007)

    Google Scholar 

  56. Pekalska, E., Haasdonk, B.: Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1017–1032 (2009)

    Google Scholar 

  57. Ranzato, M.A., Szummer, M.: Semi-supervised learning of compact document representations with deep networks. In: Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pp. 792–799 (2008)

    Google Scholar 

  58. Romdhani, S., Torr, B., Scholkopf, B., Blake, A.: Computationally efficient face detection. In: IEEE International Conference on Computer Vision (2001)

    Google Scholar 

  59. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  60. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). doi:10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  61. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Santhiya, G., Singaravelan, S.: Multi-SVM for enhancing image search. Int. J. Sci. Eng. Res. 4(6) (2013)

    Google Scholar 

  63. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridege (2002)

    Google Scholar 

  64. Scholkopf, B., Smola, A., Muller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  65. Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Muller, K., Ratsch, G., Smola, A.: Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 10(5), 1000–1017 (1999)

    Article  Google Scholar 

  66. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  67. Shin, C., Kim, K., Park, M., Kim, H.: Support vector machine-based text detection in digital video. In: IEEE Workshop on Neural Networks for Signal Processing (2000)

    Google Scholar 

  68. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  69. Swets, D.L., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 831–836 (1996)

    Google Scholar 

  70. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  71. Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. intell. 28(7), 1088–1099 (2006)

    Article  Google Scholar 

  72. Tefas, A., Kotropoulos, C., Pitas, I.: Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication. IEEE Trans. Pattern Anal. Mach. Intell. 23(7), 735–746 (2001)

    Article  Google Scholar 

  73. Teow, L., Loe, K.: Robust vision-based features and classification schemes for off-line handwritten digit recognition. Pattern Recognit. (2002)

    Google Scholar 

  74. Thung, K., Paramesran, R., Lim, C.: Content-based image quality metric using similarity measure of moment vectors. Pattern Recognit. 45(6), 2193–2204 (2012)

    Article  MATH  Google Scholar 

  75. Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: the Ninth ACM International Conference on Multimedia, pp. 107–118 (2001)

    Google Scholar 

  76. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 13(1), 71–86 (1991)

    Article  Google Scholar 

  77. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York, NY (1995)

    Google Scholar 

  78. Vapnik, Y.N.: The Nature of Statistical Learning Theory, second edn. Springer, New York (2000)

    Google Scholar 

  79. Varma, M., Babu, B.: More generality in efficient multiple kernel learning. In: Proceedings of the International Conference on Machine Learning, Montreal, Canada (2009)

    Google Scholar 

  80. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: Proceedings of the International Conference on Computer Vision, Kyoto, Japan (2009)

    Google Scholar 

  81. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  82. Wang, Z., Chen, S., Sun, T.: Multik-MHKS: a novel multiple kernel learning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 348–353 (2008)

    Google Scholar 

  83. Wright, H.: Video Analysis for Body-worn Cameras in Law Enforcement (2015). http://www.cccblog.org/2015/08/06/video-analysis-for-body-worn-cameras-in-law-enforcement

  84. Xie, C., Kumar, V.: Comparison of kernel class-dependence feature analysis (KCFA) with kernel discriminant analysis (KDA) for face recognition. In: Proceedings of IEEE on Biometrics: Theory, Application and Systems (2007)

    Google Scholar 

  85. Yang, M.H., Ahuja, N., Kriegman, D.: Face recognition using kernel Eigenfaces. In: Proc. IEEE International Conference on Image Processing, Vancouver, Canada (2000)

    Google Scholar 

  86. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive svms. In: 15th ACM International Conference on Multimedia, pp. 188–197 (2007)

    Google Scholar 

  87. Yazdi, H.S., Javidi, M., Pourreza, H.R.: SVM-based relevance feedback for semantic video retrieval. Int. J. Signal Imaging Syst. Eng. 2(3), 99–108 (2009)

    Article  Google Scholar 

  88. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer, New York (2014)

    Google Scholar 

  89. Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: 2001 International Conference on Image Processing, vol. 2, pp. 721–724 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajit Puthenputhussery , Shuo Chen or Chengjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Puthenputhussery, A., Chen, S., Lee, J., Spasovic, L., Liu, C. (2017). Learning and Recognition Methods for Image Search and Video Retrieval. In: Liu, C. (eds) Recent Advances in Intelligent Image Search and Video Retrieval. Intelligent Systems Reference Library, vol 121 . Springer, Cham. https://doi.org/10.1007/978-3-319-52081-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52081-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52080-3

  • Online ISBN: 978-3-319-52081-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics