Skip to main content

Electromechanical Feedback Mechanisms and Power Transfer in the Mammalian Cochlea

  • Chapter
  • First Online:
Understanding the Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 62))

Abstract

The basis of the extraordinary sensitivity and frequency selectivity of the mammalian cochlea is an electromechanical feedback system that amplifies the deflection of the hair cell stereocilia. Electromechanical force is generated by the soma of the outer hair cell and acts against viscous forces. These forces are expected to be particularly large in the narrow subtectorial space between the reticular lamina and the overlying tectorial membrane. Fundamental aspects of this amplifying process are not fully understood. Three main questions are addressed in this chapter. First, given capacitive and inertial characteristics of cellular and acellular cochlear components, how is the electromechanical force coupled to the stereocilia locally, radially, and longitudinally, with correct phase to produce gain rather than attenuation? Second, how is temporal fidelity achieved in the presence of high gain? Third, what is the evidence for power amplification rather than just amplitude amplification? This chapter presents modern experimental approaches that are addressing these issues. Presented in a conceptual framework of experiment and theory, three approaches are highlighted: (1) combined pressure and voltage measurements near the organ of Corti, (2) vibration measurements at the reticular lamina and tectorial membrane, and (3) mechanical and electrokinetic properties of the tectorial membrane. The experimental evidence supports the thesis that average power gain in the region of maximum amplitude response and coupling through the tectorial membrane are both crucial for shaping the frequency response of the cochlear amplifier and, therefore, of stereocilia deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By definition, a linear system is one that satisfies the following property. Denoting time by t, if \(r_{1} \left( t \right)\) is the response to stimulus \(s_{1} \left( t \right)\) and \(r_{2} \left( t \right)\) is the response to stimulus s 2(t), then \(r_{1} \left( t \right) + r_{2} \left( t \right)\) is the response to s 1(t) + s 2(t) irrespective of the choice of s 1(t) and s 2(t). A natural consequence of this definition is that both the amplitude and the phase responses of a linear system are independent of stimulus amplitude.

References

  • Abnet, C., & Freeman, D. (2000). Deformations of the isolated mouse tectorial membrane produced by oscillatory forces. Hearing Research, 144(1–2), 29–46.

    Google Scholar 

  • Allen, J. B. (1980). Cochlear micromechanics–A physical model of transduction. The Journal of the Acoustical Society of America, 68(6), 1660–1670.

    Google Scholar 

  • Allen, J. B., & Fahey, P. F. (1992). Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane. The Journal of the Acoustical Society of America, 92(1), 178–188.

    Google Scholar 

  • Ashmore, J. (2008). Cochlear outer hair cell motility. Physiological Reviews, 88(1), 173–210.

    Google Scholar 

  • Brownell, W. E., Bader, C. R., Bertrand, D., and de Ribaupierre, Y. (1985). Evoked mechanical responses of isolated cochlear outer hair cells. Science, 227, 194–196.

    Google Scholar 

  • Chan, D., and Hudspeth, A. J. (2005). Mechanical responses of the organ of Corti to acoustic and electrical stimulation in vitro. Biophysical Journal, 89, 4382–4395.

    Google Scholar 

  • Chen, F., Zha, D., Fridberger, A., Zheng, J., Choudhury, N., Jacques, S. L., Wang, R. K., Shi, X., & Nuttall, A. L. (2011). A differentially amplified motion in the ear for near-threshold sound detection. Nature Neuroscience, 14(6), 770–774.

    Google Scholar 

  • Cooper, N. P. (2003). Compression in the peripheral auditory system. In S. P. Bacon, R. R. Fay, & A. N. Popper (Eds.), Compression from Cochlear to Cochlear Implants (pp. 18–61). New York: Springer.

    Google Scholar 

  • Currie, I. G. (1974). Fundamental Mechanics of Fluids. New York: McGraw-Hill Book Co.

    Google Scholar 

  • Dallos, P. (2003). Organ of Corti kinematics. Journal of the Association for Research in Otolaryngology, 4(3), 416–421.

    Google Scholar 

  • Dallos, P., Wu, X., Cheatham, M. A., Gao, J., Zheng, J., Anderson, C. T., Jia, S., Wang, X., Cheng, W. H. Y., Sengupta, S., He, D. Z. Z., & Zuo, J. (2008). Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron, 58(3), 333–339.

    Google Scholar 

  • Davis, H. (1957). Biophysics and physiology of the inner ear. Physiological Reviews, 37(1), 1–49.

    Google Scholar 

  • Davis, H. (1983). An active process in cochlear mechanics. Hearing Research, 9(1), 79–90.

    Google Scholar 

  • de Boer, E. (1980). Auditory physics. Physical principles in hearing theory. I. Physics Reports, 62(2), 87–174.

    Google Scholar 

  • de Boer, E., & Nuttall, A. L. (2000). The mechanical waveform of the basilar membrane. III. Intensity effects. The Journal of the Acoustical Society of America, 107(3), 1497–1507.

    Google Scholar 

  • de Boer, E., & Nuttall, A. L. (2001). Power gain of the cochlear amplifier. In D. J. Breebaart, A. J. M. Houtsma, A. Kohlrausch, V. F. Prijs, & R. Schoonhoven (Eds.), Physiological and Psychological Bases of Auditory Function (pp. 1–7). Maastricht, The Netherlands: Shaker.

    Google Scholar 

  • de Boer, E., Nuttall, A. L., Hu, N., Zou, Y., & Zheng, J. (2005). The Allen-Fahey experiment extended. The Journal of the Acoustical Society of America, 117(3), 1260–1266.

    Google Scholar 

  • Diependaal, R. J., de Boer, E., & Viergever, M. A. (1987). Cochlear power flux as an indicator of mechanical activity. The Journal of the Acoustical Society of America, 82(3), 917–926.

    Google Scholar 

  • Dong, W., & Olson, E. S. (2005). Two-tone distortion in intracochlear pressure. The Journal of the Acoustical Society of America, 117(5), 2999–3015.

    Google Scholar 

  • Dong, W., & Olson, E. S. (2006). Middle ear forward and reverse transmission in gerbil. Journal of Neurophysiology, 95(5), 2951–2961.

    Google Scholar 

  • Dong, W., & Olson, E. S. (2009). In vivo impedance of the gerbil cochlear partition at auditory frequencies. Biophysical Journal, 97(5), 1233–1243.

    Google Scholar 

  • Dong, W., & Olson, E. S. (2013). Detection of cochlear amplification and its activation. Biophysical Journal, 105(4), 1067–1078.

    Google Scholar 

  • Frank, G., Hemmert, W., & Gummer, A. W. (1999). Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4420–4425.

    Google Scholar 

  • Freeman, D. M., Masaki, K., McAllister, A. R., Wei, J. L., & Weiss, T. F. (2003a). Static material properties of the tectorial membrane: A summary. Hearing Research, 180(1–2), 11–27.

    Google Scholar 

  • Freeman, D. M., Abnet, C. C., Hemmert, W., Tsai, B. S., & Weiss T. F. (2003b). Dynamic material properties of the tectorial membrane: A summary. Hearing Research, 180(1–2), 1–10.

    Google Scholar 

  • Gavara, N., & Chadwick, R. S. (2010). Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy. Nature Methods, 7(8), 650–654.

    Google Scholar 

  • Ghaffari, R., Aranyosi, A. J., & Freeman, D. M. (2007). Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proceedings of the National Academy of Sciences of the United States of America, 104(42), 16510–16515.

    Google Scholar 

  • Ghaffari, R., Aranyosi, A. J., Richardson, G. P., & Freeman, D. M. (2010). Tectorial membrane travelling waves underlie abnormal hearing in Tectb mutant mice. Nature Communications, 1, 96. doi:10.1038/ncomms1094.

  • Ghaffari, R., Page, S. L., Farrahi, S., Sellon, J. B., & Freeman D. M. (2013). Electrokinetic properties of the mammalian tectorial membrane. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4279–4284.

    Google Scholar 

  • Ghaffari, R., Page S., Farrahi, S., Sellon, J. B., & Freeman, D. M. (2015). Electromechanical role of fixed charge in the mammalian tectorial membrane. In K. D. Karavitaki & D. P. Corey (Eds.), Mechanics of Hearing: Protein to Perception (pp. 080001-1–080001-5). Melville, New York: American Institute of Physics.

    Google Scholar 

  • Gold, T. (1948). Hearing. II. The physical basis of the action of the cochlea. Proceedings of the Royal Society B: Biological Sciences, 135, 492–498.

    Google Scholar 

  • Grosh, K., Zheng, J., Zou, Y., de Boer, E., & Nuttall, A. L. (2004). High-frequency electromotile responses in the cochlea. The Journal of the Acoustical Society of America, 115(5), 2178–2184.

    Google Scholar 

  • Gu, J. W., Hemmert, W., Freeman, D. M., & Aranyosi, A. J. (2008). Frequency-dependent shear impedance of the tectorial membrane. Biophysical Journal, 95(5), 2529–2538.

    Google Scholar 

  • Gueta, R., Barlam, D., Shneck, R. Z., & Rousso, I. (2006). Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14790–14795.

    Google Scholar 

  • Guinan, J. J., Jr. (2012). How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hearing Research, 292(1–2), 35–50.

    Google Scholar 

  • Gummer, A. W., Hemmert, W., & Zenner, H. P. (1996). Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8727–8732.

    Google Scholar 

  • Huang, S., & Olson, E. S. (2011). Auditory nerve excitation via a non-traveling wave mode of basilar membrane motion. Journal of the Association for Research in Otolaryngology, 12(5), 559–575.

    Google Scholar 

  • Hubbard, A. (1993). A traveling-wave amplifier model of the cochlea. Science, 259(5091), 68–71.

    Google Scholar 

  • Hubbard, A. E., & Mountain, D. C. (1983). Alternating current delivered into the scala media alters sound pressure at the eardrum. Science, 222, 510–512.

    Google Scholar 

  • Hudspeth, A. (1982). Extracellular current flow and the site of transduction by vertebrate hair cells. The Journal of Neuroscience, 2(1), 1–10.

    Google Scholar 

  • Jia, S., & He, D. Z. (2005). Motility-associated hair-bundle motion in mammalian outer hair cells. Nature Neuroscience, 8(8), 1028–1034.

    Google Scholar 

  • Johnson, S. L., Beurg, M., Marcotti, W., & Fettiplace, R. (2011). Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron, 70(6), 1143–1154.

    Google Scholar 

  • Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory system. The Journal of the Acoustical Society of America, 64(5), 1386–1391.

    Google Scholar 

  • Kössl, M., & Russell, I. J. (1992). The phase and magnitude of hair cell receptor potentials and frequency tuning in the guinea pig cochlea. The Journal of Neuroscience, 12(5), 1575–1586.

    Google Scholar 

  • Kronester-Frei, A. (1978). Ultrastructure of the different zones of the tectorial membrane. Cell and Tissue Research, 193(1), 11–23.

    Google Scholar 

  • Lamb, J. S., & Chadwick, R. S. (2011). Dual traveling waves in an inner ear model with two degrees of freedom. Physical Review Letters, 107(8), 088101.

    Google Scholar 

  • Lee, H. Y., Raphael, P. D., Park, J., Ellerbee, A. K., Applegate, B. E., & Oghalai, J. S. (2015). Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proceedings of the National Academy of Sciences of the United States of America, 112(10), 3128–3133.

    Google Scholar 

  • Liberman, M. C., Gao, J., He, D. Z., Wu, X., Jia, S., & Zuo, J. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature, 419(6904), 300–304.

    Google Scholar 

  • Lukashkin, A. N., Walling, M. N., & Russell, I. J. (2007). Power amplification in the mammalian cochlea. Current Biology, 17(15), 1340–1344.

    Google Scholar 

  • Lukashkin, A. N., Legan, P.K., Weddell, T. D., Lukashkina, V. A., Goodyear, R. J., Welstead, L. J., Petit, C., Russell, I. J., & Richardson, G. P. (2012). A mouse model for human deafness DFNB22 reveals that hearing impairment is due to a loss of inner hair cell stimulation. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19351–19356.

    Google Scholar 

  • Mammano, F., & Nobili, R. (1993). Biophysics of the cochlea: Linear approximation. The Journal of the Acoustical Society of America, 93(6), 3320–3332.

    Google Scholar 

  • Masaki, K., Weiss, T. F., & Freeman, D. M. (2006). Poroelastic bulk properties of the tectorial membrane measured with osmotic stress. Biophysical Journal, 91(6), 2356–2370.

    Google Scholar 

  • Meaud, J., & Grosh, K. (2010). The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. The Journal of the Acoustical Society of America, 127(3), 1411–1421.

    Google Scholar 

  • Mellado Lagarde, M. M., Drexl, M., Lukashkina, V. A., Lukashkin, A. N., & Russell, I. J. (2008). Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier. Nature Neuroscience, 11(7), 746–748.

    Google Scholar 

  • Nakajima, H. H., Dong, W., Olson, E. S., Merchant, S. N., Ravicz, M. E., & Rosowski, J. J. (2009). Differential intracochlear sound pressure measurements in normal human temporal bones. Journal of the Association for Research in Otolaryngology, 10(1), 23–36.

    Google Scholar 

  • Neely, S. T., & Kim, D. O. (1986). A model for active elements in cochlear biomechanics. The Journal of the Acoustical Society of America, 79(5), 1472–1480.

    Google Scholar 

  • Nilsen, K. E., & Russell, I. J. (2000). The spatial and temporal representation of a tone on the guinea pig basilar membrane. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11751–11758.

    Google Scholar 

  • Nowotny, M., & Gummer, A. W. (2006). Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2120–2125.

    Google Scholar 

  • Nuttall, A. L., & Ren, T. Y. (1995). Electromotile hearing: Evidence from basilar membrane motion and otoacoustic emissions. Hearing Research, 92(1–2), 170–177.

    Google Scholar 

  • Olson, E. S. (1998). Observing middle and inner ear mechanics with novel intracochlear pressure sensors. The Journal of the Acoustical Society of America, 103(6), 3445–3463.

    Google Scholar 

  • Olson, E. S. (1999). Direct measurement of intra-cochlear pressure waves. Nature, 402, 526–529.

    Google Scholar 

  • Olson, E. S. (2001). Intracochlear pressure measurements related to cochlear tuning. The Journal of the Acoustical Society of America, 110(1), 349–367.

    Google Scholar 

  • Olson, E. S., Duifhuis, H., & Steele, C. R. (2012). Von Békésy and cochlear mechanics. Hearing Research, 293(1–2), 31–43.

    Google Scholar 

  • Patuzzi, R. B. (1996). Cochlear micromechanics and macromechanics. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.), The Cochlea (pp. 186–257). New York: Springer-Verlag.

    Google Scholar 

  • Patuzzi, R. B., Yates, G. K., & Johnstone, B. M. (1989). Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Hearing Research, 39(1–2), 189–202.

    Google Scholar 

  • Pickles, J. O., Comis, S. D. & Osborne, M. P. (1984). Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Research, 15(2), 103–112.

    Google Scholar 

  • Preyer, S., & Gummer, A. W. (1996). Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment. Audiology and Neurotology, 1(1), 3–11.

    Google Scholar 

  • Preyer, S., Renz, S., Hemmert, W., Zenner, H.-P., & Gummer, A. W. (1996). Receptor potential of outer hair cells isolated from base to apex of the adult guinea-pig cochlea: Implications for cochlear tuning mechanisms. Auditory Neuroscience, 2, 145–157.

    Google Scholar 

  • Ramamoorthy, S., & Nuttall, A. L. (2012). Outer hair cell somatic electromotility in vivo and power transfer to the organ of Corti. Biophysical Journal, 102(3), 388–398.

    Google Scholar 

  • Ren, T., He, W., & Barr-Gillespie, P. G. (2016). Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry. Nature Communications, 7, 10282. doi:10.1038/ncomms10282.

  • Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81(3), 1305–1352.

    Google Scholar 

  • Russell, I. J., & Nilsen, K. E. (1997). The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane. Proceedings of the National Academy of Sciences of the United States of America, 94(6), 2660–2664.

    Google Scholar 

  • Russell, I. J., Legan, P. K., Lukashkina, V. A., Goodyear, R. J., & Richardson, G. P. (2007). Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nature Neuroscience, 10(2), 215–223.

    Google Scholar 

  • Scherer, M. P., & Gummer, A. W. (2004a). Vibration pattern of the organ of Corti up to 50 kHz: Evidence for resonant electromechanical force. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17652–17657.

    Google Scholar 

  • Scherer, M. P., & Gummer, A. W. (2004b). Impedance analysis of the organ of Corti with magnetically actuated probes. Biophysical Journal, 87(2), 1378–1391.

    Google Scholar 

  • Sellon, J. B., Ghaffari, R., Farrahi, S., Richardson G. P., & Freeman, D. M. (2014). Porosity controls spread of excitation in tectorial membrane traveling waves. Biophysical Journal, 106(6), 1406–1413.

    Google Scholar 

  • Sellon, J. B., Farrahi, S., Ghaffari, R., & Freeman, D. M. (2015). Longitudinal spread of mechanical excitation through tectorial membrane traveling waves. Proceedings of the National Academy of Sciences of the United States of America, 112(42), 12968–12973.

    Google Scholar 

  • Shera, C. A., & Guinan, J. J., Jr. (2007). Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. The Journal of the Acoustical Society of America, 121(2), 1003–1016.

    Google Scholar 

  • Shoelson, B., Dimitriadis, E. K., Cai, H., Kachar, B., & Chadwick, R. S. (2004). Evidence and implications of inhomogeneity in tectorial membrane elasticity. Biophysical Journal, 87(4), 2768–2777.

    Google Scholar 

  • Slama, M. C. C., Ravicz, M. E., & Rosowski, J. J. (2010). Middle ear function and cochlear input impedance in chinchilla. The Journal of the Acoustical Society of America, 127(3), 1397–1410.

    Google Scholar 

  • Steele, C. R, & Taber, L. A. (1981). Three-dimensional model calculations for guinea pig cochlea. The Journal of the Acoustical Society of America, 69(4), 1107–1111.

    Google Scholar 

  • Thalmann, I. (1993). Collagen of accessory structures of organ of Corti. Connective Tissue Research, 29(3), 191–201.

    Google Scholar 

  • van der Heijden, M., & Versteegh, C. P. (2015). Energy flux in the cochlea: Evidence against power amplification of the traveling wave. Journal of the Association for Research in Otolaryngology, 16(5), 581–597.

    Google Scholar 

  • Verpy, E., Leibovici, M., Michalski, N., Goodyear, R. J., Houdon, C., Weil, D., Richardson, G. P., & Petit, C. (2011). Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. The Journal of Comparative Neurology, 519(2), 194–210.

    Google Scholar 

  • von Békésy, G. (1953). Shearing microphonics produced by vibration near the inner and outer hair cells. The Journal of the Acoustical Society of America, 25(4), 786–790.

    Google Scholar 

  • von Békésy, G. (1960). Experiments in Hearing. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Wang, Y., Steele, C. R., & Puria, S. (2016). Cochlear outer-hair cell power generation and viscous fluid loss. Scientific Reports, 6, 19475. doi:10.1038/srep19475.

  • Xia, A., Gao, S. S., Yuan, T., Osborn, A., Bress, A., Pfister, M., Maricich, S. M., Pereira, F. A., & Oghalai, J. S. (2010). Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation. Disease Models and Mechanisms, 3(3–4), 209–223.

    Google Scholar 

  • Zha, D., Chen, F., Ramamoorthy, S., Fridberger, A., Choudhury, N., Jacques, S. L., Wang, R. K., & Nuttall, A. L. (2012). In vivo outer hair cell length changes expose the active process in the cochlea. PLoS ONE, 7(4), e32757.

    Google Scholar 

  • Zwislocki, J. J. (1980). Five decades of research on cochlear mechanics. The Journal of the Acoustical Society of America, 67(5), 1679–1685.

    Google Scholar 

  • Zwislocki, J. J, & Cefaratti, L. K. (1989). Tectorial membrane. II: Stiffness measurements in vivo. Hearing Research, 42(2–3), 211–227.

    Google Scholar 

Download references

Compliance with Ethics Requirements

Anthony W. Gummer declares that he has no conflict of interest. Wei Dong declares that she has no conflict of interest. Roozbeh Ghaffari declares that he has no conflict of interest. Dennis M. Freeman declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Gummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gummer, A.W., Dong, W., Ghaffari, R., Freeman, D.M. (2017). Electromechanical Feedback Mechanisms and Power Transfer in the Mammalian Cochlea. In: Manley, G., Gummer, A., Popper, A., Fay, R. (eds) Understanding the Cochlea. Springer Handbook of Auditory Research, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-52073-5_6

Download citation

Publish with us

Policies and ethics