Skip to main content

Roles of Synaptic Plasticity in Functional Recovery After Brain Injury

  • Chapter
  • First Online:

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Patients with brain injury or stroke suffer from sensory-motor disorder caused by the loss of function of damaged brain tissues. The goal of neurorehabilitation is to facilitate the recovery of the impaired sensory-motor function through new learning in the remaining intact brain tissues. Synaptic plasticity, i.e., long-term potentiation and depression of synaptic transmission, and new synapse formation through axonal sprouting, are assumed to underlie such new learning. To further elucidate the roles of synaptic plasticity in neurorehabilitation, four items are addressed in this chapter. First, the characteristics of synaptic plasticity in the intact hippocampus, cerebellum, and red nucleus are reviewed. Second, the spinal, cerebellar, and cerebral mechanisms underlying the recovery of grasping or gripping movement after unilateral spinal cord injury are discussed as an experimental model of neurorehabilitation of motor function. Third, the neural mechanisms underlying the recovery of somatosensory and vestibular functions are discussed as an experimental model of the neurorehabilitation of sensory function after injury of their pathways in the central or peripheral nervous system. Finally, recent progress in neurorehabilitation techniques, noninvasive transcranial brain stimulation, neuroprosthesis, and regenerative medicine, including the induced pluripotent stem cell technology, is reviewed in relation to synaptic plasticity.

This is a preview of subscription content, log in via an institution.

References

  • Akaneya Y, Tsumoto T, Hatanaka H. Brain-derived neurotrophic factor blocks long-term depression in rat visual cortex. J Neurophysiol. 1996;76:4198–201.

    Article  CAS  PubMed  Google Scholar 

  • Akaneya Y, Tsumoto T, Kinoshita S, Hatanaka H. Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J Neurosci. 1997;17:6707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allum JH. Recovery of vestibular ocular reflex function and balance control after a unilateral peripheral vestibular deficit. Front Neurol. 2012;3:83. doi:10.3389/fneurol.00083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alstermark B, Ekerot CF. The lateral reticular nucleus: a precerebellar centre providing the cerebellum with overview and integration of motor functions at system level. A new hypothesis. J Physiol (Lond). 2013;591:5453–8.

    Article  CAS  Google Scholar 

  • Alstermark B, Isa T. Circuits for skilled reaching and grasping. Annu Rev Neurosci. 2012;35:559–78.

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Isa T, Ohki Y, Saito Y. Disynaptic pyramidal excitation in forlimb motoneurons mediated via C(3)-C(4) propriospinal neurons in the Macaca fuscata. J Neurophysiol. 1999;82:3580–5.

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Lindström S, Lundberg A, Sybirska E. Ascending projection to the lateral reticular nucleus from C3-C4 propriospinal neurons also projecting to forelimb motoneurones. Exp Brain Res. 1981;42:282–98.

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Lundberg A. The C3-C4 propriospinal system: target-reaching and food-taking. In: Jami L, Pierrot-Deseilligny E, Zytnicki E, editors. Muscle afferents and spinal control of movement. Oxford: Pergamon Press; 1992. p. 327–54.

    Google Scholar 

  • Alstermark B, Lundberg A, Pettersson L-G, Tantisira B, Walkowska M. Motor recovery after serial spinal cord lesions of defined descending pathways in cats. Neurosci Res. 1987;5:68–73.

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Pettersson L-G. (2014a) Endogenous plasticity in neuro-rehabilitation following partial spinal cord lesions. Front Neurosci. 2014;8:59. doi:10.3389/fnins.2014.00059.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alstermark B. Pettersson L-G. (2014b) Skilled reaching and grasping in the rat: lacking of the effects corticospinal lesion. Front Neurol. 2014;5:103. doi:10.3389/fneur.00103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alstermark B, Pettersson LG, Nishimura Y, Yoshino-Saito K, Tsuboi F, Takahashi M, Isa T. Motor command for precision grip in the macaque monkey can be mediated by spinal interneurons. J Neurophysiol. 2011;106:122–6.

    Article  CAS  PubMed  Google Scholar 

  • Azim E, Jiang J, Alsternmark B, Jessell T. Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature. 2014;508:357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz W, Wang W, Kasaf S, Alsayed AAM, Fukazawa Y, Shigemoto R. Distinct kinetics of synaptic formation and memory decay in massed and spaced learning. Proc Nat Acad Sci USA. 2014;111:E195–202.

    Article  CAS  Google Scholar 

  • Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol (Lond). 2011;589:5603–12.

    Article  CAS  Google Scholar 

  • Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new interspinal circuit in adult rats. Nat Neurosci. 2004;7:269–77.

    Article  CAS  PubMed  Google Scholar 

  • Beraneck M, McKee JL, Aleisia M, Cullen KE. Asymmetric recovery in cerebellar deficient mice following unilateral labyrinthectomy. J Neurophysiol. 2008;100:945–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of perforant path. J Physiol (Lond). 1973;232:331–56.

    Article  CAS  Google Scholar 

  • Courjon JH, Flandrin JM, Jennerod M, Schmid R. The role of the flocculus in vestibular compensation after hemilabyrinthectomy. Brain Res. 1982;239:251–7.

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci. 1991;11:667–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutheil S, Brezun JM, Leonard J, Lacour M, Tighilet B. Neurogenesis and astrogenesis contribution to recovery of vestibular function in the adult cat following unilateral vestibular neurectomy. Neuroscience. 2009;164:1444–56.

    Article  CAS  PubMed  Google Scholar 

  • Ekerot C-F. The lateral reticular nucleus in the cat. VII. Excitatory and inhibitory projections from the ipsilateral forelimb tract (iF tract). Exp Brain Res. 1990;79:120–8.

    Article  CAS  PubMed  Google Scholar 

  • Faulstich M, van Alphen AM, Luo C, du Lac S, De Zeeuw CI. Oculomotor plasticity during vestibular compensation does not depend on cerebellar LTD. J Neurophysiol. 2006;96:1187–95.

    Article  CAS  PubMed  Google Scholar 

  • Florence SL, Kaas JH. Large-scale reorganization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys. J Neurosci. 1995;15:8083–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolatti G. Cortical mechanism for visual guidance of hand grasping movements in the monkey: a reversible inactivation study. Brain. 2001;124:571–86.

    Article  CAS  PubMed  Google Scholar 

  • Frisch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implication for motor learning. Neuron. 2010;66:198–204.

    Article  CAS  Google Scholar 

  • Fujito Y, Tsukahara N, Oda Y, Yoshida M. Formation of functional synapses in the adult cat red nucleus from the cerebrum following cross-innervation of forelimb flexor and extensor nerves. II. Analysis of newly appeared synaptic potentials. Exp Brain Res. 1982;45:13–8.

    CAS  PubMed  Google Scholar 

  • Funabiki K, Mishina M, Hirano T. Retarded vestibular compensation in mutant mice deficient in delta 2 glutamate receptor subunit. NeuroReport. 1995;7:189–92.

    CAS  PubMed  Google Scholar 

  • Gianotti C, Nunzi MG, Gispen WH, Corradetti R. Phosphorelation of the presynaptic protein B-50 (GAP-43) is increased during electrically induced long-term potentiation. Neuron. 1992;8:843–8.

    Article  CAS  PubMed  Google Scholar 

  • Higo N, Nishimura Y, Miura Y, Oishi T, Yoshino-Saito K, Takahashi M, Tsuboi F, Isa T. Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of macaque monkey after lesioning the lateral corticospinal tract. J Comp Neurol. 2009;516:493–506.

    Article  CAS  PubMed  Google Scholar 

  • Honda T, Ito M. Development from Marr’s theory of the cerebellum to liquid state machine and beyond. In: Vaina LM, Passingham RE, editors. Computational theories and their implementations in the brain: the legacy of David Marr. Oxford, London: Oxford Univ Press; 2016.

    Google Scholar 

  • Isa T, Ohki Y, Seki K, Alstermark B. Properties of propriospinal neurons in the C3–C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. J Neurophysiol. 2006;95:3674–85.

    Article  PubMed  Google Scholar 

  • Ito M. The cerebellum and neural control. New York: Raven; 1984.

    Google Scholar 

  • Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102.

    Article  CAS  PubMed  Google Scholar 

  • Ito M. Cerebellar long-term depression—characterization, signal transduction and functional roles. Physiol Rev. 2001;81:1143–95.

    Article  CAS  PubMed  Google Scholar 

  • Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.

    Article  PubMed  Google Scholar 

  • Ito M. The cerebellum: brain for an implicit self. New York: FT Press; 2011.

    Google Scholar 

  • Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cell. J Physiol (Lond). 1982;324:113–34.

    Article  CAS  Google Scholar 

  • Ito M, Yamaguchi K, Nagao S, Yamazaki T. Long-term depression as a model of cerebellar plasticity. Prog Brain Res. 2014;210:1–30.

    Article  PubMed  Google Scholar 

  • Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res. 2005;80:182–90.

    Article  CAS  PubMed  Google Scholar 

  • Jacobi A, Loy K, Schmalz AM, Hellsten M, Umemori H, Kerschensteiner M, Bareyre FM. FGF22 signaling regulates synapse formation during post-injury remodeling of the spinal cord. EMBO J. 2015;34:1231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins WM, Mezenich MM, Ochs MT, Allard T, Guic-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol. 1990;63:82–104.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci. 2000;23:1–37.

    Article  CAS  PubMed  Google Scholar 

  • Jorntell H, Ekerot C-F. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34:797–806.

    Article  CAS  PubMed  Google Scholar 

  • Jorntell H, Ekerot C-F. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci. 2003;23:9620–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaas JH. Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci. 1991;14:137–67.

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama T, Kameda H, Murabe N, Fukuda S, Yoshioka N, Mizukami H, Ozawa K, Sakurai M. Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets. J Neurosci. 2015;35:1181–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano M, Iino K, Maekawa K, Kano MS. Optokinetic response of cells in the nucleus reticularis tegmenti pontis of the pigmented rabbits. Exp Brain Res. 1991;87:239–44.

    CAS  PubMed  Google Scholar 

  • Kano M, Rexhausen U, Dreessen J, Konnerth A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory signals in cerebellar Purkinje cells. Nature. 1992;356:601–4.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Fujiyoshi K, Yamane J, Toyota F, Hikishima K, Nomura T, Funakoshi H, Nakamura T, Aoki M, Toyama Y, Okano H, Nakamura M. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS ONE. 2011;6(11):e27706. doi:10.1371/journal.pone.0027706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura K, Iwanami A, Nakamura M, Yamane J, Watanabe K, Suzuki Y, Miyazawa D, Shibata S, Funakoshi H, Miyatake S, Coffin RS, Nakamura T, Toyama Y, Okano H. Hepatocytic growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res. 2007;85:2332–42.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, Nori S, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Yamanaka S, Nakamura M, Okano H. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorgenicity. PLoS ONE. 2012;7(12):e52787. doi:10.1371/journal.pone.0052787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacour M, Bernad-Demanze L. Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: 10 recommendations for optimal functional therapy. Front Neurol. 2015;5:285. doi:10.3899/fneur.2014.00285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang C, Bradley PM, Jacobi A, Kerschensteiner M, Bareyre FM. STAT3 promotes corticospinal remodeling and functional recovery after spinal cord injury. EMBO Rep. 2013;14:931–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence DG, Kypers HGJM. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain. 1968a;91:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DG, Kypers HGJM. The functional organization of the motor system in the monkey. II. The effects of lesions of descending brain-stem pathway. Brain. 1968b;91:15–36.

    Article  CAS  PubMed  Google Scholar 

  • Lev-Ram V, Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA. 2002;99:8389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YX, Hashimoto T, Tokuyama W, Miyashita Y, Okuno H. Spatiotemporal dynamics of brain-derived neurotrophic factor mRNA induction in the vestibule-olivary network during vestibular compensation. J Neurosci. 2001a;21:2738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YX, Tokuyama W, Okuno H, Miyashita Y, Hashimoto T. Differential induction of brain-derived neurotrophic factor mRNA in rat inferior olive subregions following unilateral labyrinthectomy. Neuroscience. 2001b;106:385–94.

    Article  CAS  PubMed  Google Scholar 

  • Liew SL, Santamecchi E, Buch ER, Cohen LG. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci. 2014;8:378. doi:10.3389/fnhum:00378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maekawa K, Simpson JI. Climbing fiber responses evoked in the vestibulocerebellum of rabbit from visual system. J Neurophysiol. 1973;36:649–66.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224:591–605.

    Article  CAS  PubMed  Google Scholar 

  • Mewes K, Cheney PD. Facilitation and suppression of wrist and digit muscles from single rubromotoneuronal cells in awake monkey. J Neurophysiol. 1991;66:1965–77.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita Y, Ito M, Jastreboff PJ, Maekawa K, Nagao S. Effects upon eye movements of rabbits induced by severance of mossy fiber visual pathway to the cerebellar flocculus. Brain Res. 1980;198:210–5.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita Y, Nagao S. Analysis of signal content of Purkinje cell responses to optokinetic stimulation in the rabbit cerebellar flocculus by selective lesions of brainstem pathway. Neurosci Res. 1984;1:223–41.

    Article  CAS  PubMed  Google Scholar 

  • Mogilner A, Grossman JA, Ribary U, Joliot M, Volkmann J, Rapaport D, Beasley RW, Llinás RR. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proc Natl Acad Sci USA. 1993;90:3593–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murai N, Tsuji J, Ito J, Mishina M, Hirano T. Vestibular compensation in glutamate receptor delta-2 subunit knockout mice: dynamic property of vestibulo-ocular reflex. Eur Arch Otorhinolaryngol. 2004;261:82–6.

    Article  PubMed  Google Scholar 

  • Murakami F, Fujito Y, Tsukahara N. Physiological properties of the newly formed cortico-rubral synapses of red nucleus neurons due to collateral sprouting. Brain Res. 1976;103:147–51.

    Article  CAS  PubMed  Google Scholar 

  • Nagao S. Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic eye movements in pigmented rabbits. Exp Brain Res. 1983;53:36–46.

    Article  CAS  PubMed  Google Scholar 

  • Namgung U, Matsuyama S, Routtenberg A. Long-term potentiation activates the GAP-43 promoter: selective participation of hippocampal mossy cells. Proc Natl Acad Sci USA. 1997;94:11675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan PW, Smith MC. Long descending tracts in man. 1. Review of present knowledge. Brain. 1955;78:248–303.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Isa T. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys. Exp Neurol. 2012;235:152–61.

    Article  PubMed  Google Scholar 

  • Nishimura Y, Morichika Y, Isa T. A subcortical oscillatory network after spinal cord injury. Brain. 2009;132:709–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura Y, Onoe H, Morichika Y, Perfiliev S, Tsukada H, Isa T. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science. 2007;318:1150–5.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res. 2002;69:925–33.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Endo S, Shirao T, Nagao S. Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning. J Neurosci. 2011;31:8958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano H, Yamanaka S. iPS cell technologies: significance and application to CNS regeneration and disease. Mol Brain. 2014;7:22. doi:10.1186/1756-6606-7-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onodera S, Hicks TP. Carbocyanine dye usage in demarcating boundaries of the aged human red nucleus. PLoS ONE. 2010;5:e14430. doi:10.1371/journal.pone.0006623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersson L-G, Blagovechtchenski E, Perfiliev S, Krasnochokova E, Lundberg A. Recovery of food-taking in cats after lesions of the corticospinal (complete) and rubrospinal (complete and incomplete) tracts. Neurosci Res. 2000;38:109–12.

    Article  CAS  PubMed  Google Scholar 

  • Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical regeneration after sensory deafferentiation in adult macaques. Science. 1991;252:1857–60.

    Article  CAS  PubMed  Google Scholar 

  • Precht W. Neural operation in the vestibular system. In: Study of brain function, vol. 2, ed by Barlow HH, Konstanz EF, Grusser O-J, van der Loos H. Springer, Berlin Heidelberg, New York; 1977.

    Google Scholar 

  • Pugh JR, Raman IM. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51:113–23.

    Article  CAS  PubMed  Google Scholar 

  • Qi HX, Gharbawie OA, Wynne KW, Kaas JH. Impairment and recovery of hand use after unilateral section of the dorsal columns of the spinal cord in squirrel monkeys. Behav Brain Res. 2013;252:363–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi HX, Kaas JH, Reed JL. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates. Front Syst Neurosci. 2014;8:84. doi:10.3389/fnsys.2014.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raisman G, Field PM. A quantitative investigation of the development of collateral innervation after partial deafferentation of septal nuclei. Brain Res. 1973;50:241–64.

    Article  CAS  PubMed  Google Scholar 

  • Raisman G. Formation of synapses in the adult after injury: similarities and differences between a peripheral and a central nervous site. Philos Trans R Soc Lond B Biol Sci. 1977;278:349–59.

    Article  CAS  PubMed  Google Scholar 

  • Raisman G. What hope for repair of the brain? Ann Neurol. 1978;3:101–6.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VS. Behavioral and magnetoencephalographic correlations of plasticity in the adult human brain. Proc Natl Acad Sci USA. 1993;90:10413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rancillac A, Crepel F. Synapses between parallel fibers and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J Physiol (Lond). 2004;554:707–20.

    Article  CAS  Google Scholar 

  • Recanzone GH, Allard TT, Jenkins WM, Merzenich MM. Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats. J Neurophysiol. 1990;63:1213–25.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC. Plasticity in human motor system. Folia Phoniatr Logop. 2010;62:153–7.

    Article  PubMed  Google Scholar 

  • Sakurai M. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol (Lond). 1987;394:463–80.

    Article  CAS  Google Scholar 

  • Sanes JR, Jessel TM. Repairing the damaged brain. In Principles of Neural Science, Chapter 57, pp 1284-pp1305. Edited by Kandel ER, Schwartz JH, Jessel TM, Siegelbaum S, Hudspeth AJ. 5th Ed. McGraw-Hill, New York; 2012.

    Google Scholar 

  • Sasaki S, Isa T, Pettersson LG, Alstermark B, Naito K, Yoshimura K, Seki K, Ohki Y. Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J Neurophysiol. 2004;92:3142–7.

    Article  PubMed  Google Scholar 

  • Sawada M, Kato K, Kunieda T, Mikuni N, Miyamoto S, Onoe H, Isa T, Nishimura Y. Function of the nucleus accumbens in motor control during recovery after spinal cord injury. Science. 2015;350:98–101.

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE, Goodman JH, Sollas AL. Action of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. J Neurosci. 1999;19:5619–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sczesny-Kaiser M, Hoffken O, Aach M, Cruciger O, Grasmucke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M. HAL exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil. 2015;12:68. doi:10.1186/s12984-015-0058-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S. Memory trace of motor learning shifts from cerebellar cortex to nuclei for consolidation. Neuroscience. 2006;139:767–77.

    Article  CAS  PubMed  Google Scholar 

  • Stanton PK, Sejnowski TJ. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989;339:215–8.

    Article  CAS  PubMed  Google Scholar 

  • Strick PL. Anatomical organization of multiple motor areas in the frontal lobe: implications for recovery of function. Adv Neurol. 1988;47:293–312.

    CAS  PubMed  Google Scholar 

  • Tanaka S, Kawaguchi SY, Shioi G, Hirano T. Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibule-ocular reflex. J Neurosci. 2013;33:17209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tighilet B, Brezun JM, Sylvie GD, Gaubert C, Lacour M. New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat. Eur J Neurosci. 2007;25:47–58.

    Article  PubMed  Google Scholar 

  • Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H, Nagai T, Katoh H, Kohda K, Matsuzaki Y, Yuzaki M, Ikeda E, Toyama Y, Nakamura M, Yamanaka S, Okano H. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA. 2010;107:12704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukahara N, Fujito Y. Physiological evidence of new synapses from cerebrum in the red nucleus neurons following cross-union of forelimb nerve. Brain Res. 1976;106:184–8.

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara N, Fujito Y, Oda Y, Maeda J. Formation of functional synapses in the adult cat red nucleus from the cerebrum following cross-innervating of forelimb flexor and extensor nerves. I. Appearance of new synaptic potentials. Exp Brain Res. 1982;45:1–12.

    CAS  PubMed  Google Scholar 

  • Tsukahara N, Hultborn H, Murakami F, Fujito Y. Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. J Neurophysiol. 1975;38:1359–72.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Nakadate K, Masugi-Tokita M, Shutoh F, Aziz W, Tarusawa E, Lorincz A, Molner E, Kesaf S, Li Y-Q, Fukazawa Y, Nagao S, Shigemoto R. Distinct cerebellar engrams in short-term and long-term motor learning. Proc Natl Acad Sci USA. 2014;111:E188–93.

    Article  CAS  PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain. 2003a;126:1430–48.

    Article  CAS  PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003b;126:2476–96.

    Article  CAS  PubMed  Google Scholar 

  • Wessel MJ, Zimerman M, Hummel FC. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum Neurosci. 2015;9:265. doi:10.3389/fuhum.2015.00265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Itohara S, Ito M. Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus. Proc Natl Acad Sci USA. 2016;113:10192–7.

    Google Scholar 

  • Yamazaki T, Nagao S. A computational mechanism for unified gain and timing control in the cerebellum. PLoS One. 2012;7:e33319. doi:10.1371/journal.pone.0033319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Nagao S, Lennon W, Tanaka S. Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc Nat Acad Sci USA. 2015;112:3541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto T, Shimizu I, Hiroi Y, Kawaki M, Nagasawa M. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int J Rehabil Res. 2015;36:338–43.

    Article  Google Scholar 

  • Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkeys. Brain. 2012;135:2277–89.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Takeru Honda (Motor Disorders Project, Tokyo Metropolitan Institute of Medical Science) for his helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Nagao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nagao, S., Ito, M. (2017). Roles of Synaptic Plasticity in Functional Recovery After Brain Injury. In: Petrosini, L. (eds) Neurobiological and Psychological Aspects of Brain Recovery. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-52067-4_8

Download citation

Publish with us

Policies and ethics