Skip to main content

Translatable Models of Brain and Cognitive Reserve

  • Chapter
  • First Online:
Neurobiological and Psychological Aspects of Brain Recovery

Abstract

The observation of variation in levels of neuropathology required for individuals to develop cognitive deficits led to the theory of ‘brain and cognitive reserve’ (BCR). This theory posits that there are intrinsic and environmental factors that modify the probability that an individual will develop a neurological disorder in response to a given insult. The development of animal models has allowed this theory to be tested, with rodent experiments demonstrating how environmental factors such as environmental enrichment and exercise levels can ameliorate models of ageing, neurodegeneration and brain injury. Physiological studies in these animal models have identified putative neurobiological mediators of improved BCR from the molecular to anatomical level. Improvements in the development of these models will enable improved testing of the BCR theory and further aid in the quest for developing enviromimetic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abel JL, Rissman EF. Running-induced epigenetic and gene expression changes in the adolescent brain. Int J Dev Neurosci. 2013;31:382–90.

    Article  CAS  PubMed  Google Scholar 

  • Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 2008;8:57–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25:4217–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aimone JB, Deng W, Gage FH. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron. 2011;70:589–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ali AE, Wilson YM, Murphy M. A single exposure to an enriched environment stimulates the activation of discrete neuronal populations in the brain of the fos-tau-lacZ mouse. Neurobiol Learn Mem. 2009;92:381–90.

    Article  PubMed  Google Scholar 

  • Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front Syst Neurosci 2014;8:156.

    Google Scholar 

  • Arai JA, Feig LA. Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res Bull. 2011;85:30–5.

    Article  PubMed  Google Scholar 

  • Barense MD, Fox MT, Baxter MG. Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats. Learn Mem. 2002;9:191–201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Barnes DE, Yaffe K, Satariano WA, Tager IB. A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J Am Geriatr Soc. 2003;51:459–65.

    Article  PubMed  Google Scholar 

  • Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010;17:1092–103.

    Article  CAS  PubMed  Google Scholar 

  • Baroncelli L, Scali M, Sansevero G, Olimpico F, Manno I, Costa M, Sale A. Experience affects critical period plasticity in the visual cortex through an epigenetic regulation of histone post-translational modifications. J Neurosci. 2016;36:3430–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bednarek E, Caroni P. β-Adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment. Neuron. 2011;69:1132–46.

    Article  CAS  PubMed  Google Scholar 

  • Bekinschtein P, Cammarota M, Medina JH. BDNF and memory. Process Neuropharmacology. 2014;76:677–83.

    Article  CAS  Google Scholar 

  • Bekinschtein P, Oomen CA, Saksida LM, Bussey TJ (2011) Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? In: Seminars in cell and developmental biology. Elsevier, Amsterdam, pp 536–542.

    Google Scholar 

  • Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis-and BDNF-dependent phase in the hippocampus. Neuron. 2007;53:261–77.

    Article  CAS  PubMed  Google Scholar 

  • Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res. 2001;125:141–9.

    Article  CAS  PubMed  Google Scholar 

  • Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M. HDAC inhibitor–dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Inv. 2015;125:3572.

    Article  Google Scholar 

  • Bennett JC, McRae PA, Levy LJ, Frick KM. Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem. 2006;85:139–52.

    Article  PubMed  Google Scholar 

  • Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci. 1990;87:5568–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blázquez G, Cañete T, Tobeña A, Giménez-Llort L, Fernández-Teruel A. Cognitive and emotional profiles of aged Alzheimer’s disease (3 × TgAD) mice: effects of environmental enrichment and sexual dimorphism. Behav Brain Res. 2014;268:185–201.

    Article  PubMed  Google Scholar 

  • Bruce-Keller AJ, Gupta S, Knight AG, Beckett TL, McMullen JM, Davis PR, Murphy MP, Van Eldik LJ, St Clair D, Keller JN. Cognitive impairment in humanized APP × PS1 mice is linked to Aβ 1–42 and NOX activation. Neurobiol Dis. 2011;44:317–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burrows E, Hannan A. Towards environmental construct validity in animal models of CNS disorders: optimizing translation of preclinical studies. CNS Neurol Disord-Drug Targets (Formerly Curr Drug Targets-CNS Neurol Disord) 2013;12:587–592.

    Google Scholar 

  • Burrows EL, Hannan AJ. Cognitive endophenotypes, gene–environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biol Psychol. 2015;116:82–89.

    Google Scholar 

  • Burrows EL, McOmish CE, Hannan AJ. Gene–environment interactions and construct validity in preclinical models of psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011;35:1376–1382.

    Google Scholar 

  • Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci 2012;6:85.

    Google Scholar 

  • Bussey TJ, Padain TL, Skillings EA, Winters BD, Morton AJ, Saksida LM. The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn Mem. 2008;15:516–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent–sparse connectivity to dedicated sub-circuits. Trends Neurosci. 2014;37:604–14.

    Article  CAS  PubMed  Google Scholar 

  • Chuang D-M, Leng Y, Marinova Z, Kim H-J, Chiu C-T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009;32:591–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark CR, Paul RH, Williams LM, Arns M, Fallahpour K, Handmer C, Gordon E. Standardized assessment of cognitive functioning during development and aging using an automated touchscreen battery. Arch Clin Neuropsychol. 2006;21:449–67.

    Article  PubMed  Google Scholar 

  • Clark PJ, Brzezinska WJ, Puchalski EK, Krone DA, Rhodes JS. Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus. 2009;19:937–50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Clelland C, Choi M, Romberg C, Clemenson G, Fragniere A, Tyers P, Jessberger S, Saksida L, Barker R, Gage F. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connor JR, Wang EC, Diamond MC. Increased length of terminal dendritic segments in old adult rats’ somatosensory cortex: an environmentally induced response. Exp Neurol. 1982;78:466–70.

    Article  CAS  PubMed  Google Scholar 

  • Covic M, Karaca E, Lie D. Epigenetic regulation of neurogenesis in the adult hippocampus. Heredity. 2010;105:122–34.

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science. 1999;284:1670–2.

    Article  CAS  PubMed  Google Scholar 

  • Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L. Clinico-pathologic studies in dementia Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology. 1988;38:1682–1682.

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6:37.

    Article  PubMed Central  PubMed  Google Scholar 

  • De Foubert G, Carney S, Robinson C, Destexhe E, Tomlinson R, Hicks C, Murray T, Gaillard J, Deville C, Xhenseval V. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience. 2004;128:597–604.

    Article  CAS  PubMed  Google Scholar 

  • Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan LM, Marioni RE, Penke L, Rafnsson SB, Starr JM. Age-associated cognitive decline. Br Med Bull. 2009;92:135–52.

    Article  PubMed  Google Scholar 

  • Del Arco A, Segovia G, Garrido P, de Blas M, Mora F. Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res. 2007;176:267–73.

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11:339–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87(3):272.

    Google Scholar 

  • Ding Y-H, Li J, Zhou Y, Rafols JA, Clark JC, Ding Y. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovascular Res. 2006;3:15–23.

    Article  CAS  Google Scholar 

  • Ding Y, Li J, Luan X, Ding Y, Lai Q, Rafols J, Phillis J, Clark J, Diaz F. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004;124:583–91.

    Article  CAS  PubMed  Google Scholar 

  • Duan W, Guo Z, Jiang H, Ladenheim B, Xu X, Cadet JL, Mattson MP. Paroxetine retards disease onset and progression in Huntingtin mutant mice. Ann Neurol. 2004;55:590–4.

    Article  CAS  PubMed  Google Scholar 

  • Duffy SN, Craddock KJ, Abel T, Nguyen PV. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn Mem. 2001;8:26–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ekstrand J, Hellsten J, Tingström A. Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neurosci Lett. 2008;442:203–7.

    Article  CAS  PubMed  Google Scholar 

  • Elsner VR, Lovatel GA, Moysés F, Bertoldi K, Spindler C, Cechinel LR, Muotri AR, Siqueira IR. Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp Gerontol. 2013;48:136–9.

    Article  CAS  PubMed  Google Scholar 

  • Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci. 2009;3:50.

    PubMed Central  PubMed  Google Scholar 

  • Faherty CJ, Kerley D, Smeyne RJ. A Golgi-Cox morphological analysis of neuronal changes induced by environmental enrichment. Dev Brain Res. 2003;141:55–61.

    Article  CAS  Google Scholar 

  • Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003;23:9418–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L-H. Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007;447:178–82.

    Article  CAS  PubMed  Google Scholar 

  • Foubert-Samier A, Catheline G, Amieva H, Dilharreguy B, Helmer C, Allard M, Dartigues J-F. Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiol Aging. 2012; 33:423. e415–423, e425.

    Google Scholar 

  • Gage FH, Chen KS, Buzsaki G, Armstrong D. Experimental approaches to age-related cognitive impairments. Neurobiol Aging. 1988;9:645–55.

    Article  CAS  PubMed  Google Scholar 

  • Galimberti I, Gogolla N, Alberi S, Santos AF, Muller D, Caroni P. Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience. Neuron. 2006;50:749–63.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher M, Burwell R, Burchinal MR. Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci. 1993;107:618.

    Article  CAS  PubMed  Google Scholar 

  • García-Mesa Y, Giménez-Llort L, López LC, Venegas C, Cristòfol R, Escames G, Acuña-Castroviejo D, Sanfeliu C. Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging 2012;33:1124. e1113–1124. e1129.

    Google Scholar 

  • Gardian G, Browne SE, Choi D-K, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005;280:556–63.

    Article  CAS  PubMed  Google Scholar 

  • Garthe A, Behr J, Kempermann G. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE. 2009;4:e5464–e5464.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garthe A, Roeder I, Kempermann G. Mice in an enriched environment learn more flexibly. Brain Plast. 2015; 26(2):261–271.

    Google Scholar 

  • Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H. Mild cognitive impairment. The Lancet. 2006;367:1262–70.

    Article  Google Scholar 

  • Gil-Mohapel J, Brocardo PS, Christie BR. The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr Drug Targets. 2014;15:454–68.

    Article  CAS  PubMed  Google Scholar 

  • Gil-Mohapel J, Brocardo PS, Choquette W, Gothard R, Simpson JM, Christie BR. Hippocampal neurogenesis levels predict WATERMAZE search strategies in the aging brain. PLoS ONE. 2013;8:e75125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci. 2011;33:383–90.

    Article  CAS  PubMed  Google Scholar 

  • Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci. 1997;17:2492–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graves A, Mortimer J, Larson E, Wenzlow A, Bowen J, McCormick W. Head circumference as a measure of cognitive reserve. Association with severity of impairment in Alzheimer’s disease. Br J Psychiatry. 1996;169:86–92.

    Article  CAS  PubMed  Google Scholar 

  • Greenough WT, Hwang H, Gorman C. Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proc Natl Acad Sci. 1985;82:4549–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griesbach GS. Exercise after traumatic brain injury: is it a double-edged sword? PM&R. 2011;3:S64–72.

    Article  Google Scholar 

  • Griesbach GS, Hovda D, Molteni R, Wu A, Gomez-Pinilla F. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience. 2004;125:129–39.

    Article  CAS  PubMed  Google Scholar 

  • Grote HE, Bull ND, Howard ML, Van Dellen A, Blakemore C, Bartlett PF, Hannan AJ. Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur J Neurosci. 2005;22:2081–8.

    Article  PubMed  Google Scholar 

  • Hannan A (2004) Huntington’s disease: which drugs might help patients? IDrugs: Investig Drugs J 7:351–358.

    Google Scholar 

  • Harburger LL, Lambert TJ, Frick KM. Age-dependent effects of environmental enrichment on spatial reference memory in male mice. Behav Brain Res. 2007;185:43–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harrison DJ, Busse M, Openshaw R, Rosser AE, Dunnett SB, Brooks SP. Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington’s disease mouse model. Exp Neurol. 2013;248:457–69.

    Article  PubMed  Google Scholar 

  • Hebb DO. The effects of early experience on problem solving at maturity. Am Psychol. 1947;2:306–7.

    Google Scholar 

  • Heldt S, Stanek L, Chhatwal J, Ressler K. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry. 2007;12:656–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62:1377–91.

    Article  PubMed  Google Scholar 

  • Herring A, Yasin H, Ambrée O, Sachser N, Paulus W, Keyvani K. Environmental enrichment counteracts Alzheimer’s neurovascular dysfunction in TgCRND8 mice. Brain Pathol. 2008;18:32–9.

    Article  CAS  PubMed  Google Scholar 

  • Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S, Franich NR, Maiti P, Frautschy SA, Zeitlin S, Levine MS, Chesselet MF. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegeneration. 2012;7:12.

    Article  CAS  Google Scholar 

  • Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF. Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol. 2010;225:74–84.

    Article  CAS  PubMed  Google Scholar 

  • Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci. 2003;100:2041–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman AN, Malena RR, Westergom BP, Luthra P, Cheng JP, Aslam HA, Zafonte RD, Kline AE. Environmental enrichment-mediated functional improvement after experimental traumatic brain injury is contingent on task-specific neurobehavioral experience. Neurosci Lett. 2008;431:226–30.

    Article  CAS  PubMed  Google Scholar 

  • Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SR, Alsiö J, Oomen CA, Holmes A, Saksida LM. The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc. 2013;8:1961–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–103.

    Article  CAS  PubMed  Google Scholar 

  • Hullinger R, O’Riordan K, Burger C. Environmental enrichment improves learning and memory and long-term potentiation in young adult rats through a mechanism requiring mGluR5 signaling and sustained activation of p70s6k. Neurobiol Learn Mem. 2015;125:126–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irier H, Street RC, Dave R, Lin L, Cai C, Davis TH, Yao B, Cheng Y, Jin P. Environmental enrichment modulates 5-hydroxymethylcytosine dynamics in hippocampus. Genomics. 2014;104:376–82.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab. 1992;12:110–9.

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng. 2001;17:157–65.

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, Younkin LH, Younkin SG, Borchelt DR, Savonenko AV. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci. 2005;25:5217–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juraska JM, Kopcik JR. Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Res. 1988;450:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Katzman R. Education and the prevalence of dementia and Alzheimer’s disease. Neurology; 1993.

    Google Scholar 

  • Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988;23:138–44.

    Article  CAS  PubMed  Google Scholar 

  • Kellner Y, Gödecke N, Dierkes T, Thieme N, Zagrebelsky M, Korte M. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Cell and molecular signaling, and transport pathways involved in growth factor control of synaptic development and function. 2015.

    Google Scholar 

  • Kempermann G. The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 2008;31:163–9.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G. Activity-based maintenance of adult hippocampal neurogenesis: maintaining a potential for lifelong plasticity. In: Neural stem cells in development, adulthood and disease. New York: Springer; 2015. pp 119–123.

    Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–5.

    Article  CAS  PubMed  Google Scholar 

  • Kerr A, Steuer E, Pochtarev V, Swain R. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience. 2010;171:214–26.

    Article  CAS  PubMed  Google Scholar 

  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2010;35:870–80.

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Ko I-G, Kim B-K, Kim T-W, Kim S-E, Shin M-S, Kim C-J, Kim H, Kim K-M, Baek S-S. Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol Behav. 2010;101:660–5.

    Article  CAS  PubMed  Google Scholar 

  • Klepac N, Relja M, Klepac R, Hecimovic S, Babic T, Trkulja V. Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: a cross-sectional study. J Neurol. 2007;254:1676–83.

    Article  CAS  PubMed  Google Scholar 

  • Kobilo T, Liu Q-R, Gandhi K, Mughal M, Shaham Y, van Praag H. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem. 2011;18:605–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol. 2006;199:113–21.

    Article  CAS  PubMed  Google Scholar 

  • Kovesdi E, Gyorgy AB, Kwon S, Wingo DL, Kamnaksh A, Long JB, Kasper CE, Agoston DV. The effect of enriched environment on the outcome of traumatic brain injury; a behavioral, proteomics, and histological study. Front Neurosci. 2011;5:3389.

    Article  CAS  Google Scholar 

  • Krityakiarana W, Espinosa-Jeffrey A, Ghiani C, Zhao P, Topaldjikian N, Gomez-Pinilla F, Yamaguchi M, Kotchabhakdi N, de Vellis J. Voluntary exercise increases oligodendrogenesis in spinal cord. Int J Neurosci. 2010;120:280–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kronenberg G, Wang L-P, Geraerts M, Babu H, Synowitz M, Vicens P, Lutsch G, Glass R, Yamaguchi M, Baekelandt V. Local origin and activity-dependent generation of nestin-expressing protoplasmic astrocytes in CA1. Brain Struct Funct. 2007;212:19–35.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K, Takeshima H, Ando T. Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus. 2011;21:127–32.

    Article  CAS  PubMed  Google Scholar 

  • Lahiani-Cohen I, Lourbopoulos A, Haber E, Rozenstein-Tsalkovich L, Abramsky O, Grigoriadis N, Rosenmann H. Moderate environmental enrichment mitigates tauopathy in a neurofibrillary tangle mouse model. J Neuropathol Exp Neurol. 2011;70:610–21.

    Article  CAS  PubMed  Google Scholar 

  • LaSarge C, Nicolle M. Comparison of different cognitive rat models of human aging. In: Animal models of human cognitive aging. New York: Springer; 2009. P. 1–30.

    Google Scholar 

  • Lazarov O, Robinson J, Tang Y-P, Hairston IS, Korade-Mirnics Z, Lee VM-Y, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell. 2005;120:701–13.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kosaras B, Del Signore SJ, Cormier K, McKee A, Ratan RR, Kowall NW, Ryu H. Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol. 2011;121:487–98.

    Article  CAS  PubMed  Google Scholar 

  • Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res. 2005;163:78–90.

    Article  PubMed  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    Article  CAS  PubMed  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21:8370–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, dos Santos Moysés F, Vizuete A, Spindler C, Cechinel LR, Netto CA, Muotri AR. Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem. 2013;101:94–102.

    Article  CAS  PubMed  Google Scholar 

  • Maegele M, Lippert-Gruener M, Ester-Bode T, Sauerland S, Schäfer U, Molcanyi M, Lefering R, Bouillon B, Neiss WF, Angelov DN. Reversal of neuromotor and cognitive dysfunction in an enriched environment combined with multimodal early onset stimulation after traumatic brain injury in rats. J Neurotrauma. 2005;22:772–82.

    Article  PubMed  Google Scholar 

  • Mainardi M, Landi S, Gianfranceschi L, Baldini S, De Pasquale R, Berardi N, Maffei L, Caleo M. Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. J Neurosci Res. 2010;88:3048–59.

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87:493–506.

    Article  CAS  PubMed  Google Scholar 

  • Marlatt MW, Potter MC, Lucassen PJ, van Praag H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6 J mice. Dev Neurobiol. 2012;72:943–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masciopinto F, Di Pietro N, Corona C, Bomba M, Pipino C, Curcio M, Di Castelnuovo A, Ciavardelli D, Silvestri E, Canzoniero LM. Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD, and wild-type mice. Cell Death Dis. 2012;3:e448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan YJ, Smith MA, Perry G. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem. 2003;85:1101–8.

    Article  CAS  PubMed  Google Scholar 

  • McKenzie IA, Ohayon D, Li H, De Faria JP, Emery B, Tohyama K, Richardson WD. Motor skill learning requires active central myelination. Science. 2014;346:318–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McOmish CE, Hannan AJ. Enviromimetics: exploring gene environment interactions to identify therapeutic targets for brain disorders. Expert Opin Ther Targets. 2007;11:899–913.

    Article  CAS  PubMed  Google Scholar 

  • Ménard C, Quirion R. Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS ONE. 2012;7:e28666.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meshi D, Drew MR, Saxe M, Ansorge MS, David D, Santarelli L, Malapani C, Moore H, Hen R. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci. 2006;9:729–31.

    Article  CAS  PubMed  Google Scholar 

  • Miller BR, Hen R. The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol. 2015;30:51–8.

    Article  CAS  PubMed  Google Scholar 

  • Mineur Y, Belzung C, Crusio W. Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience. 2007;150:251–9.

    Article  CAS  PubMed  Google Scholar 

  • Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10:850–60.

    Article  CAS  PubMed  Google Scholar 

  • Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus. 2006;16:233–8.

    Article  CAS  PubMed  Google Scholar 

  • Mo C, Hannan AJ, Renoir T. Environmental factors as modulators of neurodegeneration: Insights from gene–environment interactions in Huntington’s disease. Neurosci Biobehav Rev. 2015;52:178–92.

    Article  PubMed  Google Scholar 

  • Mo C, Renoir T, Hannan AJ. What’s wrong with my mouse cage? Methodological considerations for modeling lifestyle factors and gene–environment interactions in mice. Journal of neuroscience methods. 2015b.

    Google Scholar 

  • Mora F, Segovia G, del Arco A. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev. 2007;55:78–88.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer JA. Brain reserve and the clinical expression of Alzheimer’s disease. Geriatrics. 1997;52:S50–3.

    PubMed  Google Scholar 

  • Mustroph ML, Chen S, Desai SC, Cay EB, DeYoung EK, Rhodes JS. Aerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6 J mice. Neuroscience. 2012;219:62–71.

    Article  CAS  PubMed  Google Scholar 

  • Nelson RL, Guo Z, Halagappa VM, Pearson M, Gray AJ, Matsuoka Y, Brown M, Martin B, Iyun T, Maudsley S. Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3xTgAD mice. Exp Neurol. 2007;205:166–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nichol KE, Parachikova AI, Cotman CW. Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav Brain Res. 2007;184:124–32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P, Rosa-Neto P, Tong X-K, Hamel E. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor γ agonist. J Neurosci. 2008;28:9287–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicolle MM, Baxter MG. Glutamate receptor binding in the frontal cortex and dorsal striatum of aged rats with impaired attentional set-shifting. Eur J Neurosci. 2003;18:3335–42.

    Article  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697–709.

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol. 2009;89:369–82.

    Article  PubMed  Google Scholar 

  • Nithianantharajah J, Levis H, Murphy M. Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol Learn Mem. 2004;81:200–10.

    Article  CAS  PubMed  Google Scholar 

  • Novkovic T, Mittmann T, Manahan-Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus. 2015;25:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Novkovic T, Heumann R, Manahan-Vaughan D. Ras does not contribute to the facilitation of hippocampal synaptic plasticity enabled by environmental enrichment. Neuroscience. 2015b.

    Google Scholar 

  • Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–20.

    Article  CAS  PubMed  Google Scholar 

  • Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16:250–60.

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425:479–94.

    Article  CAS  PubMed  Google Scholar 

  • Pang T, Stam N, Nithianantharajah J, Howard M, Hannan A. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience. 2006;141:569–84.

    Article  CAS  PubMed  Google Scholar 

  • Pang TY, Du X, Zajac MS, Howard ML, Hannan AJ. Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2009;18:753–66.

    Article  CAS  PubMed  Google Scholar 

  • Passineau MJ, Green EJ, Dietrich WD. Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats. Exp Neurol. 2001;168:373–84.

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross CA, Duan W. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol. 2008;210:154–63.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Severiano F, Rı́os C, Segovia J. Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res. 2000;862:234–7.

    Article  PubMed  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology. 2005;177:245–55.

    Article  CAS  PubMed  Google Scholar 

  • Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, Mandolesi L. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res Rev. 2009;61:221–39.

    Article  PubMed  Google Scholar 

  • Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H. Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS currents 2. 2010.

    Google Scholar 

  • Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci. 2008;29:609–15.

    Article  CAS  PubMed  Google Scholar 

  • Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H. Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med. 2008;205:2781–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quinn J, Kulhanek D, Nowlin J, Jones R, Praticò D, Rokach J, Stackman R. Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: implications for clinical trials. Brain Res. 2005;1037:209–13.

    Article  CAS  PubMed  Google Scholar 

  • Quinn JF, Bussiere JR, Hammond RS, Montine TJ, Henson E, Jones RE, Stackman RW. Chronic dietary α-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol Aging. 2007;28:213–25.

    Article  CAS  PubMed  Google Scholar 

  • Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interventions Aging. 2007;2:219.

    CAS  Google Scholar 

  • Rampon C, Tang Y-P, Goodhouse J, Shimizu E, Kyin M, Tsien JZ. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci. 2000a;3:238–44.

    Article  CAS  PubMed  Google Scholar 

  • Rampon C, Jiang CH, Dong H, Tang Y-P, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y. Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci. 2000b;97:12880–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmuson S, Olsson T, Henriksson BG, Kelly PA, Holmes MC, Seckl JR, Mohammed AH. Environmental enrichment selectively increases 5-HT1A receptor mRNA expression and binding in the rat hippocampus. Mol Brain Res. 1998;53:285–90.

    Article  CAS  PubMed  Google Scholar 

  • Renoir T, Pang TY, Zajac MS, Chan G, Du X, Leang L, Chevarin C, Lanfumey L, Hannan AJ. Treatment of depressive-like behaviour in Huntington’s disease mice by chronic sertraline and exercise. Br J Pharmacol. 2012;165:1375–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richards M, Deary IJ. A life course approach to cognitive reserve: a model for cognitive aging and development? Ann Neurol. 2005;58:617–22.

    Article  PubMed  Google Scholar 

  • Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A, Frechilla D, Del Río J, García-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology. 2009;34:1721–32.

    Article  CAS  PubMed  Google Scholar 

  • Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci. 2006;24:1850–6.

    Article  PubMed  Google Scholar 

  • Saczynski JS, Pfeifer LA, Masaki K, Korf ES, Laurin D, White L, Launer LJ. The effect of social engagement on incident dementia the Honolulu-Asia aging study. Am J Epidemiol. 2006;163:433–40.

    Article  PubMed  Google Scholar 

  • Saha R, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2006;13:539–50.

    Article  CAS  PubMed  Google Scholar 

  • Sale A, Berardi N, Maffei L. Enrich the environment to empower the brain. Trends Neurosci. 2009;32:233–9.

    Article  CAS  PubMed  Google Scholar 

  • Sale A, Berardi N, Maffei L. Environment and brain plasticity: towards an endogenous pharmacotherapy. Physiol Rev. 2014;94:189–234.

    Article  CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O. Requirement of hippocampal neurogenesis for the behavioral effects of antide pressants. Science. 2003;301:805–9.

    Article  CAS  PubMed  Google Scholar 

  • Satz P, Morgenstern H, Miller EN, Seines OA, McArthur JC, Cohen BA, Wesch J, Becker JT, Jacobson L, D’elia LF. Low education as a possible risk factor for cognitive abnormalities in HIV-1: findings from the Multicenter AIDS Cohort Study (MACS). JAIDS J Acquir Immune Defic Syndromes. 1993;6:503–11.

    CAS  Google Scholar 

  • Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005;192:348–56.

    Article  CAS  PubMed  Google Scholar 

  • Schmand B, Smit J, Geerlings M, Lindeboom J. The effects of intelligence and education on the development of dementia. A test of the brain reserve hypothesis. Psychol Med. 1997;27:1337–44.

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld TJ, Gould E. Differential effects of stress and glucocorticoids on adult neurogenesis. In: Neurogenesis and neural plasticity. New York: Springer. 2013. p. 139–164.

    Google Scholar 

  • Schrijver NC, Bahr NI, Weiss IC, Würbel H. Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav. 2002;73:209–24.

    Article  CAS  PubMed  Google Scholar 

  • Segovia G, Del Arco A, de Blas M, Garrido P, Mora F. Effects of an enriched environment on the release of dopamine in the prefrontal cortex produced by stress and on working memory during aging in the awake rat. Behav Brain Res. 2008;187:304–11.

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Arai Y. Age-related production of new granule cells in the adult dentate gyrus. Neuroreport. 1995;6:2479–82.

    Article  CAS  PubMed  Google Scholar 

  • Silva LFA, Hoffmann MS, Gerbatin RdR, Fiorin FdS, Dobrachinski F, Mota BC, Wouters ATB, Pavarini SP, Soares FAA, Fighera MR. Treadmill exercise protects against pentylenetetrazol-induced seizures and oxidative stress after traumatic brain injury. J Neurotrauma. 2013;30:1278–87.

    Article  PubMed Central  PubMed  Google Scholar 

  • Simpson J, Kelly JP. The impact of environmental enrichment in laboratory rats—behavioural and neurochemical aspects. Behav Brain Res. 2011;222:246–64.

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, Tabaton M, Perry G. Amyloid-β deposition in alzheimer transgenic mice is associated with oxidative stress. J Neurochem. 1998;70:2212–5.

    Article  CAS  PubMed  Google Scholar 

  • Soffié M, Hahn K, Terao E, Eclancher F. Behavioural and glial changes in old rats following environmental enrichment. Behav Brain Res. 1999;101:37–49.

    Article  PubMed  Google Scholar 

  • Sozda CN, Hoffman AN, Olsen AS, Cheng JP, Zafonte RD, Kline AE. Empirical comparison of typical and atypical environmental enrichment paradigms on functional and histological outcome after experimental traumatic brain injury. J Neurotrauma. 2010;27:1047–57.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11:1006–12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stern Y, Alexander G, Prohovnik I, Stricks L, Link B, Lennon M, Mayeux R. Relationship between lifetime occupation and parietal flow Implications for a reserve against Alzheimer’s disease pathology. Neurology. 1995;45:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    Article  CAS  PubMed  Google Scholar 

  • Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC, Greenough WT. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003;117:1037–46.

    Article  CAS  PubMed  Google Scholar 

  • Swallow JG, Carter PA, Garland T Jr. Artificial selection for increased wheel-running behavior in house mice. Behav Genet. 1998;28:227–37.

    Article  CAS  PubMed  Google Scholar 

  • Sweatt JD. Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry. 2009;65:191–7.

    Article  PubMed  Google Scholar 

  • Tang Y-P, Wang H, Feng R, Kyin M, Tsien J. Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology. 2001;41:779–90.

    Article  CAS  PubMed  Google Scholar 

  • Trembath MK, Horton ZA, Tippett L, Hogg V, Collins VR, Churchyard A, Velakoulis D, Roxburgh R, Delatycki MB. A retrospective study of the impact of lifestyle on age at onset of Huntington disease. Mov Disord. 2010;25:1444–50.

    Article  PubMed  Google Scholar 

  • Turner AM, Greenough WT. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 1985;329:195–203.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela MJ. Brain reserve and the prevention of dementia. Curr Opin Psychiatry. 2008;21:296–302.

    Article  PubMed  Google Scholar 

  • Valenzuela MJ, Sachdev P. Brain reserve and dementia: a systematic review. Psychol Med. 2006;36:441–54.

    Article  PubMed  Google Scholar 

  • Valero J, España J, Parra-Damas A, Martín E, Rodríguez-Álvarez J, Saura CA. Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APP Sw, Ind transgenic mice. PloS One. 2011;6:e16832.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature. 2000;404:721–2.

    Article  PubMed  Google Scholar 

  • Van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci. 2008;9:34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Borght K, Kóbor-Nyakas DÉ, Klauke K, Eggen BJ, Nyakas C, Van der Zee EA, Meerlo P. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus. 2009;19:928–36.

    Article  PubMed  Google Scholar 

  • Verret L, Krezymon A, Halley H, Trouche S, Zerwas M, Lazouret M, Lassalle J-M, Rampon C. Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging. 2013;34:211–25.

    Article  CAS  PubMed  Google Scholar 

  • Viola GG, Rodrigues L, Américo JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonçalves CA, Xavier LL, Achaval M. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res. 2009;1274:47–54.

    Article  CAS  PubMed  Google Scholar 

  • Wang H-X, Karp A, Winblad B, Fratiglioni L. Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen project. Am J Epidemiol. 2002;155:1081–7.

    Article  PubMed  Google Scholar 

  • Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayán J. US-Venezuela collaborative research project. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA. 2004;101:3498–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G. Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry. 2006;60:1314–23.

    Article  CAS  PubMed  Google Scholar 

  • Wood NI, Glynn D, Morton AJ. “Brain training” improves cognitive performance and survival in a transgenic mouse model of Huntington’s disease. Neurobiol Dis. 2011;42:427–37.

    Article  PubMed  Google Scholar 

  • Wright D, Renoir T, Smith Z, Frazier A, Francis P, Thorburn D, McGee S, Hannan A, Gray L. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Transl Psychiatry. 2015;5:e492.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright DJ, Gray LJ, Finkelstein DI, Crouch PJ, Pow D, Pang T, Li S, Smith ZM, Francis PS, Renoir T. N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington’s disease. Hum Mol Genet:ddw144. 2016.

    Google Scholar 

  • Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14:128–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xun Z, Rivera-Sanchez S, Ayala-Pena S, Lim J, Budworth H, Skoda EM, Robbins PD, Niedernhofer LJ, Wipf P, McMurray CT. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep. 2012;2:1137–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young JW, Powell SB, Geyer MA, Jeste DV, Risbrough VB. The mouse attentional-set-shifting task: a method for assaying successful cognitive aging? Cogn Affect Behav Neurosci. 2010;10:243–51.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zajac M, Pang T, Wong N, Weinrich B, Leang L, Craig J, Saffery R, Hannan A. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. Hippocampus. 2010;20:621–36.

    CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60.

    Article  CAS  PubMed  Google Scholar 

  • Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9:268–75.

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5:311–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zeleznikow-Johnston, A.M., Burrows, E.L., Renoir, T., Hannan, A.J. (2017). Translatable Models of Brain and Cognitive Reserve. In: Petrosini, L. (eds) Neurobiological and Psychological Aspects of Brain Recovery. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-52067-4_4

Download citation

Publish with us

Policies and ethics