Skip to main content

A Microscopic Point of View on Singularities in Fluid Models

  • Chapter
  • First Online:
Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 17))

  • 796 Accesses

Abstract

These lecture notes present some challenging problems regarding the multiscale analysis of some systems exhibiting singularities at the macroscopic scale. We are interested namely in shocks for the compressible Euler equations in 1D, vortex sheets for the incompressible Euler equations in 2D, and spatial concentrations for the Boltzmann equation. We would like to obtain a microscopic description of these singularities, and to understand whether the scale separation is relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Arsenio, L. Saint-Raymond, From the Vlasov-Maxwell-Boltzmann System to Incompressible Viscous Electro-magneto-hydrodynamics (2015, submitted), https://arxiv.org/abs/1604.01547

  2. C. Bardos, Problmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. Ecole Norm. Sup. (4) 3, 185–233 (1970)

    Google Scholar 

  3. C. Bardos, F. Golse, C.D. Levermore, Fluid dynamic limits of the Boltzmann equation I. J. Stat. Phys. 63, 323–344 (1991)

    Article  MATH  Google Scholar 

  4. C. Bardos, F. Golse, C.D. Levermore, Fluid dynamic limits of kinetic equations II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations. J. Stat. Phys. 124, 371–399 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Bodineau, I. Gallagher, L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. Math. 203 (2), 493–553 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Bodineau, I. Gallagher, L. Saint-Raymond, From hard spheres to the linearized Boltzmann equation: an L 2 analysis of the Boltzmann-Grad limit. Ann PDEs (2015, to appear)

    Google Scholar 

  8. N. Bogoliubov, Problems of dynamical theory in statistical physics, in Studies in Statistical Mechanics, ed. by J. de Boer, G.E. Uhlenbeck (Interscience, New York, 1962)

    Google Scholar 

  9. L. Boltzmann, Weitere Studien uber das Warme gleichgenicht unfer Gasmolakular. Sitzungsberichte der Akademie der Wissenschaften 66, 275–370 (1872) (Transl.: Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory, ed. by S.G. Brush, vol. 2, pp. 88–174. Pergamon, Oxford, 1966)

    Google Scholar 

  10. L. Boltzmann, Leçons sur la théorie des gaz, Gauthier-Villars (Paris, 1902–1905) (Ré-édition Jacques Gabay, 1987)

    Google Scholar 

  11. M. Born, H.S. Green, A general kinetic theory of liquids. I. The molecular distribution functions. Proc. R. Soc. Lond. Ser. A 188, 10–18 (1946)

    Article  MATH  Google Scholar 

  12. F. Bouchut, F. Golse, M. Pulvirenti, in Kinetic Equations and Asymptotic Theory, ed. by L. Desvillettes, B. Perthame (Editions scientifiques et médicales Elsevier, Paris, 2000)

    Google Scholar 

  13. A. Bressan, Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170, 414–432 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Bressan, R. Colombo, The semigroup generated by 2 × 2 conservation laws. Arch. Ration. Mech. Anal. 133, 1–75 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bressan, S. Bianchini, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161, 223–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Burnett, The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. S2–40, 382–435 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33, 651–666 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Caflisch, B. Nicolaenko. Shock waves for the Boltzmann equation. Contemp. Math. 17, 35–44 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Cercignani, The Boltzmann Equation and Its Application (Springer, New York, 1988)

    Book  MATH  Google Scholar 

  20. C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  21. S. Chapman, T.G. Cowling, The Mathematical Theory of Nonuniform Gases. Series Cambridge Mathematical Library, 3rd edn. (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  22. A. Cohen, T. Kappeler, Scattering and inverse scattering for steplike potentials in the Schrödinger equation. Indiana Univ. Math. J. 34, 127–180 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer, New York/Heidelberg, 1976)

    Book  MATH  Google Scholar 

  24. C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften, vol. 325 (Springer, Berlin, 2000)

    Google Scholar 

  26. J.-M. Delort. Existence de nappes de tourbillon en dimension deux [Existence of vortex sheets in dimension two]. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. R.J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 20, 187–212 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. R.J. DiPerna, P.-L. Lions, On the Cauchy problem for the Boltzmann equation: global existence and weak stability results. Ann. Math. 130, 321–366 (1990)

    Article  MATH  Google Scholar 

  29. I. Gallagher, L. Saint-Raymond, B. Texier, From Newton to Boltzmann: the case of hard-spheres and short-range potentials. Zur. Lect. Adv. Math. (2014). doi: 10.4171/129

    Book  MATH  Google Scholar 

  30. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Golse, L. Saint-Raymond, Hydrodynamic limits for the Boltzmann equation. Riv. Mat. Univ. Parma 4, 1–144 (2005)

    MathSciNet  MATH  Google Scholar 

  32. F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76, 110–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. A.N. Gorban, I.V. Karlin, Structure and approximations of the Chapman-Enskog expansion for the linearized Grad equations. Transp. Theory Stat. Phys. 21, 101–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. I.V. Karlin, A.N. Gorban, Hydrodynamics from Grad’s equations: what can we learn from exact solutions? Ann. Phys. 11, 783–833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. A.N. Gorban, I.V. Karlin. Hilbert’s 6th problem: exact and approximate hydrodynamic manifolds for kinetic equations. Bull. Am. Math. Soc. (N.S.) 51 (2), 187–246 (2014)

    Google Scholar 

  36. H. Grad, On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  37. S.Y. Ha, S.E. Noh, New a priori estimate for the Boltzmann-Enskog equation. Nonlinearity 19, 1219–1232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Hilbert, Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Hilbert, Begründung der kinetische Gastheorie. Math. Ann. 72, 562–577 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.G. Kirkwood, The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14, 180–202 (1946)

    Google Scholar 

  41. O.E. Lanford, Time evolution of large classical systems, in Dynamical Systems: Theory and Applications: Battelle Seattle 1974 Rencontres, ed. by J. Moser. Lecture Notes in Physics, vol. 38, pp. 1–111 (Springer, Berlin/New York, 1975)

    Google Scholar 

  42. P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation I, II, III. Commun. Pure Appl. Math. 36, 253–290, 571–593, 809–829 (1983)

    Google Scholar 

  43. C.D. Levermore, The hyperbolic nature of the zero dispersion KdV limit. Commun. Partial Differ. Equ. 13, 495–614 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. P.-L. Lions, Conditions at infinity for Boltzmann’s equation. Commun. Partial Differ. Equ. 19, 335–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. P.-L. Lions, N. Masmoudi, From Boltzmann equation to the Navier-Stokes and Euler equations I. Arch. Rat. Mech. Anal. 158, 173–193 (2001)

    Article  MATH  Google Scholar 

  46. P.L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163 (2), 415–431 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. T.P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics. Indiana Univ. Math. J. 26, 147–177 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  48. T.-P. Liu, S.-H. Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246, 133–179 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. T.-P. Liu, T. Yang, S.-H. Yu, Energy method for Boltzmann equation. Phys. D 188, 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Majda, R. Pego, Stable viscosity matrices for systems of conservation laws. J. Differ. Equ. 56, 229–262 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Métivier, K. Zumbrun, Existence and sharp localization in velocity of small-amplitude Boltzmann shocks. Kinet. Relat. Models 2, 667–705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. B. Perthame, Introduction to the collision models in Boltzmann’s theory, in Modeling of Collisions, ed. by P.-A. Raviart (Masson, Paris, 1997)

    Google Scholar 

  53. M. Pulvirenti, C. Saffirio, S. Simonella, On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26 (2), 1450001, 64 (2014)

    Google Scholar 

  54. L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal. 166, 47–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method, Ann. Inst. H. Poincaré C-26, 705–744 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1971 (Springer, Berlin, 2009)

    Google Scholar 

  57. M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7, 959–1000 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  58. D. Serre, Multi-dimensional systems of conservation laws; an introductory lecture, in Hyperbolic Conservation Laws and Related Analysis with Applications, Edinburgh, ed. by G-Q.G. Chen, H. Holden, K.H. Karlsen, Sept 2011

    Google Scholar 

  59. T. Sideris, Formation of singularities in 3D compressible fluids. Commun. Math. Phys. 101, 475–485 (1985)

    Article  MATH  Google Scholar 

  60. S. Simonella, Evolution of correlation functions in the hard sphere dynamics. J. Stat. Phys. 155 (6), 1191–1221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Slemrod, Admissibility of weak solutions for the compressible Euler equations, n ≥ 2. Philos. Trans. R. Soc. A 371, 1–11 (2013)

    Google Scholar 

  62. H. Spohn, Boltzmann hierarchy and Boltzmann equation, in Kinetic Theories and the Boltzmann Equation, Montecatini (1981), pp. 207–220

    Google Scholar 

  63. H. Spohn, Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics (Springer, Heidelberg, 1991)

    Google Scholar 

  64. S. Ukai, Les solutions globales de l’équation de Boltzmann dans l’espace tout entier et dans le demi-espace. C. R. Acad. Sci. Paris Sér. A-B 282, 317–320 (1976)

    MathSciNet  MATH  Google Scholar 

  65. S. Ukai, The Boltzmann-Grad Limit and Cauchy-Kovalevskaya Theorem. Jpn. J. Ind. Appl. Math. 18, 383–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  66. S. Venakides, The Korteweg-de Vries equation with small dispersion: higher order Lax-Levermore theory. Commun. Pure Appl. Math. 43, 335–361 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  67. C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305 (North-Holland, Amsterdam, 2002)

    Google Scholar 

  68. H.T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22, 63–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Yvon, La théorie statistique des fluides et l’équation d’état. Actualités scientifiques et industrielles, vol. 203 (Hermann, Paris, 1935)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Saint-Raymond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saint-Raymond, L. (2017). A Microscopic Point of View on Singularities in Fluid Models. In: Colombini, F., Del Santo, D., Lannes, D. (eds) Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics. Springer INdAM Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-52042-1_9

Download citation

Publish with us

Policies and ethics