Skip to main content

A Few Remarks on Hyperbolic Systems with Zygmund in Time Coefficients

  • Chapter
  • First Online:
  • 710 Accesses

Part of the book series: Springer INdAM Series ((SINDAMS,volume 17))

Abstract

This note deals with first order hyperbolic systems with constant multiplicities. We assume that the coefficients of the operator depend just on the time variable, and they verify Zygmund-type regularity conditions. For such operators, well-posedness in the framework of Sobolev spaces is known to hold, possibly with a finite loss of derivatives. The main purpose of the present paper is to establish finite propagation speed, which is the key to build up a local theory. The argument of the proof relies on showing fine estimates about the propagation of the support of the solution: this is achieved by passing in Fourier variables and applying Paley-Wiener theorem. In particular, our approach is specific of the time-dependent case, and it cannot be extended to operators whose coefficients depend also on the space variables.

In honour of Guy Métivier in occasion of his 65th birthdayTowering, genius disdains a beaten path. It seeks regions hitherto unexplored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For instance, already for m = 1, take the function S(ξ) = ξ∕ | ξ | : then S(ζ) is well-defined, but it is no more self-adjoint.

  2. 2.

    We know that S(t, ξ) is a symmetrizer for A(t, ξ), but this does not imply that S(t, ζ) is a symmetrizer for A(t, ζ) = A(t, ξ) + iA(t, η).

References

  1. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Avellaneda, C. Bardos, J. Rauch, Contrôlabilité exacte, homogénéisation et localisation d’ondes dans un milieu non-homogène. Asymptotic Anal. 5, 481–494 (1992)

    MathSciNet  MATH  Google Scholar 

  3. H. Bahouri, J.-Y. Chemin, Équations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides. Arch. Ration. Mech. Anal. 127, 159–181 (1994)

    Article  MATH  Google Scholar 

  4. H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) (Springer, Heidelberg, 2011)

    Google Scholar 

  5. C. Castro, E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media. Arch. Ration. Mech. Anal. 164, 39–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-Y. Chemin, Fluides Parfaits Oncompressibles. Astérisque, vol. 230 (Société mathématique de France, Paris, 1995)

    Google Scholar 

  7. M. Cicognani, F. Colombini, Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem. J. Differ. Equ. 221, 143–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Colombini, E. De Giorgi, S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Scuola Normale Sup. Pisa Cl. Scienze (4), 6, 511–559 (1979)

    Google Scholar 

  9. F. Colombini, D. Del Santo, F. Fanelli, G. Métivier, Time-dependent loss of derivatives for hyperbolic operators with non-regular coefficients. Commun. Partial Differ. Equ. 38, 1791–1817 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Colombini, D. Del Santo, F. Fanelli, G. Métivier, A well-posedness result for hyperbolic operators with Zygmund coefficients. J. Math. Pures Appl. 100 (9), 455–475 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Colombini, D. Del Santo, F. Fanelli, G. Métivier, The well-posedness issue in Sobolev spaces for hyperbolic systems with Zygmund-type coefficients. Commun. Partial Differ. Equ. 40, 2082–2121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Colombini, D. Del Santo, F. Fanelli, G. Métivier, On the Cauchy problem for microlocally symmetrizable hyperbolic systems with log-Lipschitz coefficients (2016, submitted)

    Google Scholar 

  13. F. Colombini, N. Lerner, Hyperbolic operators with non-Lipschitz coefficients. Duke Math. J. 77, 657–698 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Colombini, G. Métivier, The Cauchy problem for wave equations with non-Lipschitz coefficients; application to continuation of solutions of some nonlinear wave equations. Ann. Sci. École Norm. Sup. (4) 41, 177–220 (2008)

    Google Scholar 

  15. F. Colombini, G. Métivier, Couterexamples to the well-posedness of the Cauchy problem for hyperbolic systems. Anal. PDE 8, 499–511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Danchin, On the well-posedness of the incompressible density-dependent Euler equations in the L p framework. J. Differ. Equ. 248, 2130–2170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Danchin, F. Fanelli, The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. J. Math. Pures Appl. 96, 253–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-M. Delort, Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.-J. Di Perna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Fanelli, Some local questions for hyperbolic systems with non-regular time dependent coefficients J. Hyperbolic Differ. Equ. (2016). Accepted for publication

    Google Scholar 

  21. F. Fanelli, E. Zuazua, Weak observability estimates for 1-D wave equations with rough coefficients. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 245–277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Feireisl, I. Gallagher, D. Gérard-Varet, A. Novotný, Multi-scale analysis of compressible viscous and rotating fluids. Commun. Math. Phys. 314, 641–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Fernández-Cara, E. Zuazua, On the null controllability ot the one-dimensional heat equation with BV coefficients. Comput. Appl. Math. 21, 167–190 (2002)

    MathSciNet  MATH  Google Scholar 

  24. I. Gallagher, L. Saint-Raymond, Weak convergence results for inhomogeneous rotating fluid equations. J. Anal. Math. 99, 1–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. V.J. Ivriĭ, V.M. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed. Usephi Math. Nauk 29, 3–70 (1974). English transl. Russ. Math. Surv. 29, 1–70 (1974)

    Google Scholar 

  26. J.-L. Joly, G. Métivier, J. Rauch, Hyperbolic domains of determinacy and Hamilton-Jacobi equations. J. Hyperb. Differ. Equ. 2, 713–744 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Métivier, Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems. Centro di Ricerca Matematica “Ennio De Giorgi” (CRM) Series (Edizioni della Normale, Pisa, 2008)

    Google Scholar 

  28. G. Métivier, L 2 well-posed Cauchy problems and symmetrizability of first order systems. J. Éc. Polytech. Math. 1, 39–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Métivier, S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Rauch, Precise finite speed with bare hands. Methods Appl. Anal. 12, 267–277 (2005)

    MathSciNet  MATH  Google Scholar 

  31. S. Tarama, Energy estimate for wave equations with coefficients in some Besov type class. Electron. J. Differ. Equ. 85, 12pp (2007)

    MathSciNet  MATH  Google Scholar 

  32. F. Treves, Basic Linear Partial Differential Equations. Pure and Applied Mathematics (Academic Press, New York/London, 1975)

    MATH  Google Scholar 

  33. V.I. Yudovich, Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    Google Scholar 

Download references

Acknowledgements

The author wishes to express all his gratitude to T. Alazard, whose relevant question motivated the study presented in this note about finite propagation speed. He whishes to thanks also G. Métivier and T. Nishitani for enlightening discussions on hyperbolic systems.

Finally, he is deeply grateful to the anonymous referee for the careful reading and the constructive remarks, which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fanelli, F. (2017). A Few Remarks on Hyperbolic Systems with Zygmund in Time Coefficients. In: Colombini, F., Del Santo, D., Lannes, D. (eds) Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics. Springer INdAM Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-52042-1_4

Download citation

Publish with us

Policies and ethics