Skip to main content

Amplitude Equations for Weakly Nonlinear Surface Waves in Variational Problems

  • Chapter
  • First Online:
Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 17))

  • 720 Accesses

Abstract

Among hyperbolic Initial Boundary Value Problems (IBVP), those coming from a variational principle ‘generically’ admit linear surface waves, as was shown by Serre (J Funct Anal 236(2):409–446, 2006). At the weakly nonlinear level, the behavior of surface waves is expected to be governed by an amplitude equation that can be derived by means of a formal asymptotic expansion. Amplitude equations for weakly nonlinear surface waves were introduced by Lardner (Int J Eng Sci 21(11):1331–1342, 1983), Parker and co-workers (J Elast 15(4):389–426, 1985) in the framework of elasticity, and by Hunter (Nonlinear surface waves. In: Current progress in hyberbolic systems: Riemann problems and computations (Brunswick, 1988). Contemporary mathematics, vol 100. American Mathematical Society, pp 185–202, 1989) for abstract hyperbolic problems. They consist of nonlocal evolution equations involving a complicated, bilinear Fourier multiplier in the direction of propagation along the boundary. It was shown by the authors in an earlier work (Benzoni-Gavage and Coulombel Arch Ration Mech Anal 205(3):871–925, 2012) that this multiplier, or kernel, inherits some algebraic properties from the original IBVP. These properties are crucial for the (local) well-posedness of the amplitude equation, as shown together with Tzvetkov (Adv Math, 2011). Properties of amplitude equations are revisited here in a somehow simpler way, for surface waves in a variational setting. Applications include various physical models, from elasticity of course to the director-field system for liquid crystals introduced by Saxton (Dynamic instability of the liquid crystal director. In: Current progress in hyperbolic systems: Riemann problems and computations (Brunswick, 1988). Contemporary mathematics, vol 100. American Mathematical Society, Providence, pp 325–330, 1989) and studied by Austria and Hunter (Commun Inf Syst 13(1):3–43, 2013). Similar properties are eventually shown for the amplitude equation associated with surface waves at reversible phase boundaries in compressible fluids, thus completing a work initiated by Benzoni-Gavage and Rosini (Comput Math Appl 57(3–4):1463–1484, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Emphasized words are explained in the bulk of the paper.

  2. 2.

    This unusual choice is made for convenience, so as to avoid too many minus signs in calculations.

  3. 3.

    The reader may think of Ω as {x ;   x d  > 0}, so that \(\boldsymbol{\nu } = (0,\ldots, 0, 1)\), but we prefer keeping the notations ν j for the components of \(\boldsymbol{\nu }\) in the calculations, for symmetry reasons.

  4. 4.

    By exponential function of z we mean a function of the form eω z, with Re ω < 0 here.

  5. 5.

    Recall that we have set c = 1 without loss of generality.

References

  1. G. Alì, J.K. Hunter, Orientation waves in a director field with rotational inertia. Kinet. Relat. Models 2 (1), 1–37 (2009)

    Google Scholar 

  2. G. Alì, J.K. Hunter, D.F. Parker, Hamiltonian equations for scale-invariant waves. Stud. Appl. Math. 108 (3), 305–321 (2002)

    Google Scholar 

  3. L. Austria, J.K. Hunter, Nonlinear variational surface waves. Commun. Inf. Syst. 13 (1), 3–43 (2013)

    Google Scholar 

  4. L.A.A. Austria, Nonlinear hyperbolic surface waves in variational boundary-value problems. ProQuest LLC, Ann Arbor, Thesis (Ph.D.)–University of California, Davis (2011)

    Google Scholar 

  5. S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals fluid. Nonlinear Anal. 31 (1–2), 243–263 (1998)

    Google Scholar 

  6. S. Benzoni-Gavage, Local well-posedness of nonlocal Burgers equations. Differ. Integral Equ. 22 (3–4), 303–320 (2009)

    Google Scholar 

  7. S. Benzoni-Gavage, J.-F. Coulombel, On the amplitude equations for weakly nonlinear surface waves. Arch. Ration. Mech. Anal. 205 (3), 871–925 (2012). hal.archives-ouvertes.fr/hal-00607348

  8. S. Benzoni-Gavage, J.-F. Coulombel, The amplitude equations for weakly nonlinear reversible phase boundaries (2015), Technical note, available at hal.archives-ouvertes.fr/hal-01208192

  9. S. Benzoni-Gavage, M. Rosini, Weakly nonlinear surface waves and subsonic phase boundaries. Comput. Math. Appl. 57 (3–4), 1463–1484 (2009)

    Google Scholar 

  10. S. Benzoni-Gavage, D. Serre, Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2007)

    Google Scholar 

  11. V.L. Berdichevsky, Variational Principles of Continuum Mechanics. I. Fundamentals. Interaction of Mechanics and Mathematics (Springer, Berlin, 2009)

    Google Scholar 

  12. V.L. Berdichevsky, Variational Principles of Continuum Mechanics. II. Applications. Interaction of Mechanics and Mathematics (Springer, Berlin, 2009)

    Google Scholar 

  13. J.-F. Coulombel, M. Williams, Geometric optics for surface waves in nonlinear elasticity (2016), Preprint available at arxiv.org/abs/1604.04546

  14. M.F. Hamilton, Yu.A. Il’insky, E.A. Zabolotskaya, Evolution equations for nonlinear rayleigh waves. J. Acoust. Soc. Am. 97 (2), 891–897 (1995)

    Google Scholar 

  15. J.K. Hunter, Nonlinear surface waves, in Current Progress in Hyperbolic Systems: Riemann Problems and Computations (Brunswick, 1988). Volume 100 of Contemporary Mathematics (American Mathematical Society, Providence, 1989), pp 185–202

    Google Scholar 

  16. J.K. Hunter, Short-time existence for scale-invariant Hamiltonian waves. J. Hyperbolic Differ. Equ. 3 (2), 247–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.W. Lardner, Nonlinear surface waves on a en elastic solid. Int. J. Engng Sci. 21 (11), 1331–1342 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, New York, 1984)

    Google Scholar 

  19. A. Marcou, Rigorous weakly nonlinear geometric optics for surface waves. Asymptotic Anal. 69 (3–4), 125–174 (2010)

    Google Scholar 

  20. D.F. Parker, Waveform evolution for nonlinear surface acoustic waves. Int. J. Eng. Sci. 26 (1), 59–75 (1988)

    Article  MATH  Google Scholar 

  21. D.F. Parker, F.M. Talbot, Analysis and computation for nonlinear elastic surface waves of permanent form. J. Elast. 15 (4), 389–426 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. R.A. Saxton, Dynamic instability of the liquid crystal director, in Current Progress in Hyperbolic Systems: Riemann Problems and Computations (Brunswick, 1988). Contemporary Mathematics, vol. 100 (American Mathematical Society, Providence, 1989), pp 325–330

    Google Scholar 

  23. D. Serre, Sur le principe variationnel des équations de la mécanique des fluides parfaits. RAIRO Modél. Math. Anal. Numér. 27 (6), 739–758 (1993)

    Google Scholar 

  24. D. Serre, Second order initial boundary-value problems of variational type. J. Funct. Anal. 236 (2), 409–446 (2006)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the ANR project BoND (ANR-13-BS01-0009-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Benzoni-Gavage .

Editor information

Editors and Affiliations

Appendix

Appendix

Proposition A.1

Let \(b: \mathbb{R}^{3} \rightarrow \mathbb{C}\) be a symmetric, continuous function outside Z:={ (k,ℓ,m) ; kℓm = 0} and such that, for all \((k,\ell,m) \in \mathbb{R}^{3}\setminus Z\),

$$\displaystyle{ b(-k,-\ell,-m) = \overline{b(k,\ell,m)}, }$$
$$\displaystyle{ \vert b(k,\ell,m)\vert \,\leq \, C(1 + k^{2} +\ell ^{2} + m^{2}), }$$

with C a positive constant. Then the functional

$$\displaystyle{ \mathcal{T} [w] = \frac{1} {3}\,\iint b(-k - m,k,m)\,\widehat{w}(-k - m)\,\widehat{w}(k)\,\widehat{w}(m)\,\mathrm{d}k\,\mathrm{d}m\, }$$

is well-defined on \(H^{1}(\mathbb{R})\), and its variational derivative \(\delta \mathcal{T}\) is given by

$$\displaystyle{ \widehat{\delta \mathcal{T} [w]}(k) = 2\pi \,\int b(-k,k - m,m)\,\widehat{w}(k - m)\,\widehat{w}(m)\,\mathrm{d}m,\;\forall w \in H^{2}(\mathbb{R}; \mathbb{R})\,. }$$

Proof

By the Cauchy–Schwarz inequality, \(\widehat{w} \in L^{1}(\mathbb{R})\) for all \(w \in H^{1}(\mathbb{R})\), and

$$\displaystyle{ \|\widehat{w}\|_{L^{1}}\, \leq \,\sqrt{\pi }\,\|w\|_{H^{1}}\,. }$$

Therefore, using that

$$\displaystyle{ \vert b(-k,k - m,m)\vert \,\leq \, C(1 + \vert k\vert ^{2} + \vert k - m\vert ^{2} + \vert m\vert ^{2})\, }$$
$$\displaystyle{ \leq \, C(1 + 2\vert k\vert \vert k - m\vert + 2\vert k - m\vert \vert m\vert + 2\vert m\vert \vert k\vert ), }$$

we see that the trilinear mapping \(\mathcal{T}\) is continuous on \(H^{1}(\mathbb{R})\), with

$$\displaystyle{ \vert \mathcal{T} [w]\vert \leq 8C\,\pi ^{2}\,\|\widehat{w}\|_{ L^{1}}\,\|w\|_{H^{1}}^{2}\, \leq 8C\,\pi ^{3}\,\|w\|_{ H^{1}}^{3}, }$$

by the Fubini, Cauchy–Schwarz, and Plancherel theorems. Furthermore, for all w, \(v \in H^{1}(\mathbb{R}; \mathbb{R})\), we have

$$\displaystyle\begin{array}{rcl} \frac{\mathrm{d}} {\mathrm{d}\theta }\mathcal{T} [w +\theta v]_{\vert \theta =0}\,& =& \,\frac{1} {3}\,\iint b(-k - m,k,m)\,\widehat{v}(-k - m)\,\widehat{w}(k)\,\widehat{w}(m)\,\mathrm{d}k\,\mathrm{d}m {}\\ & & +\frac{1} {3}\,\iint b(-k - m,k,m)\,\widehat{w}(-k - m)\,\widehat{v}(k)\,\widehat{w}(m)\,\mathrm{d}k\,\mathrm{d}m {}\\ & & +\frac{1} {3}\,\iint b(-k - m,k,m)\,\widehat{w}(-k - m)\,\widehat{w}(k)\,\widehat{v}(m)\,\mathrm{d}k\,\mathrm{d}m {}\\ \,& =& \,\iint b(-k - m,k,m)\,\widehat{w}(-k - m)\,\widehat{w}(k)\,\widehat{v}(m)\,\mathrm{d}k\,\mathrm{d}m {}\\ \end{array}$$

by the symmetry of b and obvious changes of variables. The integral above is well defined for all w, \(v \in H^{1}(\mathbb{R}; \mathbb{R})\), as expected from the fact that \(\mathcal{T}\) is differentiable since it is trilinear continuous. However, the definition of its variational derivative \(\delta \mathcal{T} [w]\) is more demanding on w. It amounts to rewriting

$$\displaystyle{ \frac{\mathrm{d}} {\mathrm{d}\theta }\mathcal{T} [w +\theta v]_{\vert \theta =0}\, =\,\int \delta \mathcal{T} [w]\;v(y)\,\mathrm{d}y, }$$

so that \(\delta \mathcal{T} [w]\) bears all the derivatives. In view of the large frequency behavior of the kernel b, it turns out that this is possible as soon as w belongs to H 2, as we show below.

Let us recall that, by the Plancherel theorem,

$$\displaystyle{ \int \widehat{f}(-m)\,\widehat{v}(m)\,\mathrm{d}m\, =\, 2\pi \,\int f(y)\,v(y)\,\mathrm{d}y }$$

for all real valued, square integrable functions f and v. We claim that for \(w \in H^{2}(\mathbb{R}; \mathbb{R})\), we can define a real valued f ∈ L 2 by

$$\displaystyle{ \widehat{f}(m)\, =\,\int b(-m,m - k,k)\,\widehat{w}(m - k)\,\widehat{w}(k)\,\mathrm{d}k\,. }$$

Indeed, using that

$$\displaystyle{ \vert b(-m,m - k,k)\vert \,\leq \, C(1 + m^{2} + (m - k)^{2} + k^{2})\, \leq \, C(1 + 3(m - k)^{2} + 3k^{2}), }$$

we find that

$$\displaystyle{ \left \vert \int b(-m,m - k,k)\,\widehat{w}(m - k)\,\widehat{w}(k)\,\mathrm{d}k\right \vert \leq C\big((\vert \widehat{w}\vert {\ast}\vert \widehat{w}\vert )(m) + 6(\vert \widehat{w}\vert {\ast}\vert \widehat{w_{yy}}\vert )(m)\big), }$$

and

$$\displaystyle{ \|\vert \widehat{w}\vert {\ast}\vert \widehat{w}\vert \|_{L^{2}} \leq \|\widehat{ w}\|_{L^{1}}\|\widehat{w}\|_{L^{2}} = 2\pi \|\widehat{w}\|_{L^{1}}\|w\|_{L^{2}}, }$$
$$\displaystyle{ \|\vert \widehat{w}\vert {\ast}\vert \widehat{w_{yy}}\vert \|_{L^{2}} \leq \|\widehat{ w}\|_{L^{1}}\|\widehat{w_{yy}}\|_{L^{2}} \leq 2\pi \|\widehat{w}\|_{L^{1}}\|w\|_{H^{2}}\,. }$$

This shows that

$$\displaystyle{ \int \left (\int b(m,-m - k,k)\,\widehat{w}(-m - k)\,\widehat{w}(k)\,\mathrm{d}k\right )\,\widehat{v}(m)\,\mathrm{d}m\, =\, 2\pi \,\int f(y)\,v(y)\,\mathrm{d}y }$$

for all \(w \in H^{2}(\mathbb{R}; \mathbb{R})\). By the Fubini theorem and the symmetry of b, the left-hand side is exactly what we have found for the directional derivative of \(\mathcal{T}\). We thus have

$$\displaystyle{ \frac{\mathrm{d}} {\mathrm{d}\theta }\mathcal{T} [w +\theta v]_{\vert \theta =0}\, =\, 2\pi \,\int f(y)\,v(y)\,\mathrm{d}y, }$$

which means that \(\delta \mathcal{T} [w] = 2\pi f\).

Proposition A.2

Let us consider the functional \(\mathcal{M}\) defined by

$$\displaystyle{ \mathcal{M}[w] = \frac{1} {2}\,\iint \vert k\vert \,\vert \widehat{w}(k)\vert ^{2}\,\mathrm{d}k\, }$$

for all \(w \in H^{1/2}(\mathbb{R})\) . Then its variational derivative \(\delta \mathcal{M}\) is such that

$$\displaystyle{ \partial _{y}w = -\tfrac{1} {2\pi }\,\mathcal{H}(\delta \mathcal{M}[w]),\;\forall w \in H^{1}(\mathbb{R}; \mathbb{R})\,. }$$

Proof

The computations are similar to, and simpler than in the previous proposition. We have

$$\displaystyle{ \frac{\mathrm{d}} {\mathrm{d}\theta }\mathcal{M}[w +\theta v]_{\vert \theta =0}\, =\,\iint \vert k\vert \,\widehat{w}(-k)\,\widehat{v}(k)\,\mathrm{d}k\, =\, 2\pi \,\iint u(y)\,v(y)\,\mathrm{d}y, }$$

provided that \(\widehat{u}(-k) = \vert k\vert \widehat{w}(-k)\) a.e, or equivalently, \(ik\widehat{w}(k) = i\mathsf{sgn}(k)\widehat{u}(k)\), that is, \(\partial _{y}w = -\mathcal{H}(u) = -\tfrac{1} {2\pi }\,\mathcal{H}(\delta \mathcal{M}[w])\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Benzoni-Gavage, S., Coulombel, JF. (2017). Amplitude Equations for Weakly Nonlinear Surface Waves in Variational Problems. In: Colombini, F., Del Santo, D., Lannes, D. (eds) Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics. Springer INdAM Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-52042-1_1

Download citation

Publish with us

Policies and ethics