Skip to main content

General Concepts on Reinforced Concrete

  • Chapter
  • First Online:
Reinforced Concrete Design to Eurocode 2

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 3399 Accesses

Abstract

This chapter presents the properties of the constitutive materials with their strength parameters and failure criteria. A special discourse is devoted to the creep of concrete and its structural effects. The behaviour of the composite reinforced concrete sections is finally presented with the related basic assumptions for resistance calculations.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at 10.1007/978-3-319-52033-9_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giandomenico Toniolo .

Appendix: Characteristics of Materials

Appendix: Characteristics of Materials

1.1.1 Table 1.1: Hardening Curves of Concrete

The following table shows the values of the ratios f cj /f c between the strength at time t from casting and the strength at 28 days, where values deduced from the following formula:

$$ \frac{{f_{{{\text{c}j}}} }}{{f_{\text{c}} }} = {\text{e}}^{{\beta \left( {1 - 1/\sqrt \tau } \right)}}, $$

and the values of the analogous ratio E cj /E c between elastic moduli, values deduced from the following formula:

$$ \frac{{E_{{{\text{c}j}}} }}{{E_{\text{c}} }} = \left[ {{\text{e}}^{{\beta \left( {1 - 1/\sqrt \tau } \right)}} } \right]^{0.3} \quad {\text{with}}\;\tau = t/28, $$

where t is expressed in days (t = 0.58 corresponds to about 14 h of ageing, time of possible demoulding of precast elements).

Age

Strengths

Moduli

Accelerated curing (indicative values)

Concrete

Accelerated curing (indicative values)

Concrete

Fast setting

Normal setting

Slow setting

Fast setting

Normal setting

Slow setting

Days

β = 0.08

β = 0.20

β = 0.25

β = 0.38

β = 0.08

β = 0.20

β = 0.25

β = 0.38

0.58

0.62

0.30

0.23

0.10

0.87

0.70

0.64

0.51

1

0.71

0.42

0.34

0.20

0.90

0.77

0.72

0.61

2

0.80

0.58

0.50

0.35

0.94

0.85

0.81

0.73

3

0.85

0.66

0.60

0.46

0.95

0.88

0.86

0.79

4

0.88

0.72

0.66

0.54

0.96

0.91

0.88

0.83

5

0.90

0.76

0.71

0.59

0.97

0.92

0.90

0.86

6

0.91

0.79

0.75

0.64

0.97

0.93

0.92

0.88

7

0.92

0.82

0.78

0.68

0.98

0.94

0.93

0.89

10

0.95

0.87

0.85

0.77

0.98

0.96

0.95

0.93

14

0.97

0.92

0.90

0.85

0.99

0.98

0.97

0.95

21

0.99

0.97

0.96

0.94

1.00

0.99

0.99

0.98

28

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

60

1.03

1.07

1.08

1.13

1.01

1.02

1.02

1.04

90

1.04

1.09

1.12

1.18

1.01

1.03

1.03

1.05

180

1.05

1.13

1.16

1.26

1.01

1.04

1.05

1.07

365

1.06

1.16

1.20

1.32

1.02

1.04

1.06

1.09

∞

1.08

1.22

1.28

1.46

1.02

1.06

1.08

1.12

1.1.2 Table 1.2: Strength Classes of Concrete

The following tables show the strength and deformation parameters for different codified classes of concrete, of ordinary and controlled classes. Classes are characterized by characteristic values of cylinder and cubic strengths. Cylinder strength f c, cubic strength R c, tensile strength f ct and elastic modulus E c are reported in the consecutive columns, indicating the mean values with subscript m and the characteristic values with subscript k. Data are expressed in MPa and are calculated with the following formulas:

$$ \begin{array}{*{20}l} {R_{\text{cm}} = f_{\text{cm}} /0.83} \hfill & {} \hfill \\ {f_{\text{ctm}} = 0.27\sqrt[3]{{f_{\text{m}}^{2} }}} \hfill & {{\text{for}}\;f_{\text{cm}} \le 58} \hfill \\ {f_{\text{ctm}} = 2.12\,\ln \left[ {1 + \left( {f_{\text{cm}} /10} \right)} \right]} \hfill & {{\text{for}}\;f_{\text{cm}} > 58} \hfill \\ {E_{\text{cm}} = 22{,}000\left[ {f_{\text{cm}} /10} \right]^{0.3} } \hfill & {\left( {E_{\text{cm}}^{*} = E_{\text{cm}} /1000} \right)}. \hfill \\ \end{array} $$

In design previsions it is assumed \( f_{\text{cm}} = f_{\text{k}} + \Delta f \), with \( \Delta f = 8\;{\text{MPa}} \) for ordinary production (common construction sites) and with \( \Delta f = 5\;{\text{MPa}} \) for controlled production (prefabrication plants). For the two types of production, it is assumed respectively \( f_{\text{ctk}} = 0.7f_{\text{ctm}} \) and \( {\text{f}}_{\text{ctk}} = 0.8{\text{f}}_{\text{ctm}} \).

Table 1.2a

Class

Ordinary production—\( \Delta f = 8\;{\text{MPa}} \)

Class

\( f_{\text{ck}} \)

\( f_{\text{cm}} \)

\( R_{\text{cm}} \)

\( f_{\text{ctm}} \)

\( f_{\text{ctk}} \)

\( E_{\text{cm}}^{*} \)

Low

C16/20

16

24

29

2.2

1.6

29

C20/25

20

28

34

2.5

1.7

30

C25/30

25

33

40

2.8

1.9

31

Medium

C30/37

30

38

46

3.1

2.1

33

C35/43

35

43

52

3.3

2.3

34

C40/50

40

48

58

3.6

2.5

35

C45/55

45

53

64

3.8

2.7

36

Table 1.2b

Class

Controlled production—\( \Delta f = 5\;{\text{MPa}} \)

Class

\( f_{\text{ck}} \)

\( f_{\text{cm}} \)

\( R_{\text{cm}} \)

\( f_{\text{ctm}} \)

\( f_{\text{ctk}} \)

\( E_{\text{cm}}^{*} \)

Medium

C30/37

30

35

42

2.9

2.3

32

C35/43

35

40

48

3.2

2.5

33

C40/50

40

45

54

3.4

2.7

35

C45/55

45

50

60

3.7

2.9

36

High

C50/60

50

55

66

3.9

3.1

37

C55/67

55

60

72

4.1

3.3

38

C60/75

60

65

78

4.3

3.4

39

C70/85

70

75

90

4.5

3.6

40

1.1.3 Table 1.3: Deformation Parameters of Concretes

The following table shows the values of the main mechanical characteristics of concrete calculated as a function of the compressive strength with the formulas specified below:

$$ \begin{array}{*{20}l} {E_{\text{c}} = 22000\left[ {f_{\text{c}} /10} \right]^{0.3} } \hfill & {\left( {E_{\text{c}}^{*} = E_{\text{c}} /1000} \right)} \hfill \\ {\kappa = 1.05\,E_{\text{c}} \varepsilon_{\text{c1}} /f_{\text{c}} } \hfill & {} \hfill \\ {\varepsilon_{\text{c1}} = 0.7f_{\text{c}}^{0.31} \times 10^{ - 3} \le 2.8 \times 10^{ - 3} } \hfill & {\left( {\varepsilon_{{{\text{c}}1}}^{*} = 1000\varepsilon_{{{\text{c}}1}} } \right)} \hfill \\ {\varepsilon_{\text{cu}} = \left\{ {2.8 + 27\left[ {\left( {98 - f_{\text{c}} } \right)/100} \right]^{4} } \right\}10^{ - 3} \le 3.5 \times 10^{ - 3} } \hfill & {\left( {\varepsilon_{\text{cu}}^{*} = 1000\varepsilon_{\text{cu}} } \right)} \hfill \\ {f_{\text{ct}} = 0.27\sqrt[3]{{f_{\text{c}}^{2} }}} \hfill & {{\text{for}}\;f_{\text{c}} \le 58} \hfill \\ {f_{\text{ct}} = 2.12\,\ln \left[ {1 + \left( {f_{\text{c}} /10} \right)} \right]} \hfill & {{\text{for}}\;f_{\text{c}} > 58} \hfill \\ {\alpha_{\text{t}} = f_{\text{ct}} /f_{\text{c}} } \hfill & {} \hfill \\ {\kappa_{\text{t}} = 1.05\,E_{\text{c}} \varepsilon_{{{\text{ct}}1}} /f_{\text{ct}} } \hfill & {\left( {\varepsilon_{{{\text{ct}}1}} = 0.00015} \right).} \hfill \\ \end{array} $$

Such values are to be used in the constitutive models σ–ε of concrete in compression and tension, respectively, expressed in the following form:

$$ \begin{array}{*{20}l} {\sigma = \frac{{\kappa \eta - \eta^{2} }}{1 + (\kappa - 2)\eta }f_{\text{c}} } \hfill & {\left( {\eta = \varepsilon /\varepsilon_{{{\text{c}}1}} } \right)} \hfill \\ {\sigma = \left[ {\kappa_{\text{t}} \eta_{\text{t}} - (2\kappa_{\text{t}} - 3)\eta_{\text{t}}^{2} + (\kappa_{\text{t}} - 2)\eta_{\text{t}}^{3} } \right]\alpha_{\text{t}} f_{\text{c}} } \hfill & {\left( {\eta_{\text{t}} = \varepsilon /\varepsilon_{{{\text{ct}}1}} } \right)}. \hfill \\ \end{array} $$

Stresses and elastic moduli are expressed in MPa.

The other deformation characteristics are

  • Poisson’s raio v = 0.20

  • \( \begin{array}{*{20}l} {{\text{coefficient}}\,{\text{of}}\,{\text{thermal}}\,{\text{expansion}}} \hfill & {{\alpha }_{\text{T}} } \hfill = 1.0 \times 10^{ - 5} \,^\circ {\text{C}}^{ - 1}.\\ \end{array} \)

\( f_{\text{c}} \)

\( E_{\text{c}}^{*} \)

\( \kappa \)

\( \varepsilon_{{{\text{c}}1}}^{*} \)

\( \varepsilon_{\text{cu}}^{*} \)

\( f_{\text{ct}} \)

\( {\alpha }_{\text{t}} \)

\( \kappa_{\text{t}} \)

24

28.6

2.35

1.90

3.50

2.25

0.094

2.01

28

30.0

2.21

2.00

3.50

2.49

0.089

1.90

33

31.5

2.07

2.10

3.50

2.78

0.084

1.78

38

32.8

1.96

2.20

3.50

3.05

0.080

1.69

43

34.1

1.87

2.20

3.50

3.31

0.077

1.62

48

35.2

1.79

2.30

3.50

3.57

0.074

1.56

53

36.3

1.72

2.40

3.50

3.81

0.072

1.50

35

32.0

2.03

2.10

3.50

2.89

0.083

1.75

40

33.3

1.92

2.20

3.50

3.16

0.079

1.66

45

34.5

1.84

2.30

3.50

3.42

0.076

1.59

50

35.7

1.76

2.40

3.50

3.66

0.073

1.53

55

36.7

1.70

2.40

3.50

3.90

0.071

1.48

60

37.7

1.64

2.50

3.36

4.13

0.069

1.44

65

38.6

1.59

2.60

3.12

4.27

0.066

1.42

75

40.3

1.50

2.70

2.88

4.54

0.060

1.40

1.1.4 Table 1.4: Drying Shrinkage of Concrete

Drying shrinkage is given by

$$ \varepsilon_{\text{cd}} (t^{\prime } ) = \varepsilon_{{{\text{cd}}\infty }} g_{\text{s}} (t^{\prime } ), $$

where t′ is time expressed in days and measured starting from the onset of the phenomenon.

The following tables show the final value of the drying shrinkage ε cd∞ for different relative humidities h of the ageing environment, for different strength classes c of concrete and for different equivalent thicknesses s. Values are deduced from the following formula:

$$ \varepsilon_{{{\text{cd}}\infty }} = k_{\text{s}} \varepsilon_{\text{cdo}}, $$

with

$$ \begin{array}{*{20}l} {k_{\text{s}} = 0.7 + 0.0094(5 - s)^{2.5} } \hfill & {{\text{for}}\;s\, < 5} \hfill \\ {k_{\text{s}} = 0.7} \hfill & {{\text{for}}\;s\, < 5} \hfill \\ {\varepsilon_{\text{do}} = 870\left( {1 - h^{3} } \right)e^{{ - 0.12{\text{c}}}} \times 10^{ - 6} }, \hfill & {} \hfill \\ \end{array} $$

where

\( h = {\text{RH}}/100 \) :

relative humidity ratio;

\( c = f_{\text{cm}} /10 \) :

mean strength in \( {\text{kN}}/{\text{cm}}^{2} \);

\( s = \frac{{2A_{\text{c}} /u}}{100} \) :

equivalent thickness in dm;

(\( A_{\text{c}} \) = cross-sectional area in \( {\text{mm}}^{2} \); u = perimeter of the section in mm).

The ones reported in the tables are mean values, for cement of class N and for water/cement ratio ≤0.55, with coefficient of variation of about 0.30. For higher water/cement ratios, shrinkage is greater. For underwater ageing ε cd∞ = 0.00 can be assumed.

Table 1.4a: Values of \( \varepsilon_{{{\text{cd}}\infty }}^{*} = 1000\cdot\varepsilon_{{{\text{cd}}\infty }} \) for RH = 50%

Class

f cm (MPa)

Equivalent thicknesses in mm

50

100

150

300

≥500

C16/20

24

0.63

0.57

0.52

0.43

0.40

C20/25

28

0.60

0.54

0.50

0.41

0.38

C25/30

33

0.57

0.51

0.47

0.39

0.36

C30/37

38

0.53

0.48

0.44

0.36

0.34

C35/43

43

0.50

0.45

0.42

0.34

0.32

C40/50

48

0.47

0.43

0.39

0.32

0.30

C45/55

53

0.44

0.40

0.37

0.30

0.28

C30/37

35

0.55

0.50

0.46

0.38

0.35

C35/43

40

0.52

0.47

0.43

0.35

0.33

C40/50

45

0.49

0.44

0.41

0.33

0.31

C45/55

50

0.46

0.42

0.38

0.31

0.29

C50/60

55

0.43

0.39

0.36

0.30

0.28

C55/67

60

0.41

0.37

0.34

0.28

0.26

C60/75

65

0.39

0.35

0.32

0.26

0.24

C70/85

75

0.34

0.31

0.28

0.23

0.22

Table 1.4b: Values of \( \varepsilon_{{{\text{cd}}\infty }}^{*} = 1000\cdot\varepsilon_{{{\text{cd}}\infty }} \) for RH = 60%

Class

f cm (MPa)

Equivalent thicknesses in mm

50

100

150

300

≥500

C16/20

24

0.56

0.51

0.47

0.39

0.36

C20/25

28

0.54

0.49

0.45

0.37

0.34

C25/30

33

0.51

0.46

0.42

0.35

0.32

C30/37

38

0.48

0.43

0.40

0.33

0.30

C35/43

43

0.45

0.41

0.37

0.31

0.28

C40/50

48

0.42

0.38

0.35

0.29

0.27

C45/55

53

0.40

0.36

0.33

0.27

0.25

C30/37

35

0.49

0.45

0.41

0.34

0.31

C35/43

40

0.47

0.42

0.39

0.32

0.30

C40/50

45

0.44

0.40

0.36

0.30

0.28

C45/55

50

0.41

0.37

0.34

0.28

0.26

C50/60

55

0.39

0.35

0.32

0.27

0.25

C55/67

60

0.37

0.33

0.30

0.25

0.23

C60/75

65

0.35

0.31

0.29

0.24

0.22

C70/85

75

0.31

0.28

0.25

0.21

0.19

Table 1.4c: Values of \( \varepsilon_{{{\text{cd}}\infty }}^{*} = 1000\cdot\varepsilon_{{{\text{cd}}\infty }} \) for RH = 70%

Class

f cm (MPa)

Equivalent thicknesses in mm

50

100

150

300

≥500

C16/20

24

0.47

0.43

0.39

0.32

0.30

C20/25

28

0.45

0.41

0.37

0.31

0.29

C25/30

33

0.42

0.38

0.35

0.29

0.27

C30/37

38

0.40

0.36

0.33

0.27

0.25

C35/43

43

0.38

0.34

0.31

0.26

0.24

C40/50

48

0.35

0.32

0.29

0.24

0.22

C45/55

53

0.33

0.30

0.28

0.23

0.21

C30/37

35

0.41

0.38

0.34

0.28

0.26

C35/43

40

0.39

0.35

0.32

0.27

0.25

C40/50

45

0.37

0.33

0.30

0.25

0.23

C45/55

50

0.35

0.31

0.29

0.24

0.22

C50/60

55

0.33

0.30

0.27

0.22

0.21

C55/67

60

0.31

0.28

0.25

0.21

0.19

C60/75

65

0.29

0.26

0.24

0.20

0.18

C70/85

75

0.26

0.23

0.21

0.18

0.16

Table 1.4d: Values of \( \varepsilon_{{{\text{cd}}\infty }}^{*} = 1000\cdot\varepsilon_{{{\text{cd}}\infty }} \) for RH = 80%

Class

f cm (MPa)

Equivalent thicknesses in mm

50

100

150

300

≥500

C16/20

24

0.35

0.32

0.29

0.24

0.22

C20/25

28

0.33

0.30

0.28

0.23

0.21

C25/30

33

0.32

0.29

0.26

0.22

0.20

C30/37

38

0.30

0.27

0.25

0.20

0.19

C35/43

43

0.28

0.25

0.23

0.19

0.18

C40/50

48

0.26

0.24

0.22

0.18

0.17

C45/55

53

0.25

0.22

0.21

0.17

0.16

C30/37

35

0.31

0.28

0.26

0.21

0.20

C35/43

40

0.29

0.26

0.24

0.20

0.18

C40/50

45

0.27

0.25

0.23

0.19

0.17

C45/55

50

0.26

0.23

0.21

0.18

0.16

C50/60

55

0.24

0.22

0.20

0.17

0.15

C55/67

60

0.23

0.21

0.19

0.16

0.14

C60/75

65

0.21

0.19

0.18

0.15

0.14

C70/85

75

0.19

0.17

0.16

0.13

0.12

1.1.5 Table 1.5: Drying Shrinkage Curves of Concrete

The following table shows the values of the function g s(t′) which expresses the time law of drying shrinkage for different values of the equivalent thickness 2A c/u (A c = cross-sectional area of concrete; u = its perimeter).

Age

2A c/u (mm)

Small thickness

Medium–small

Medium thickness

Medium–large

Large thickness

Days

50

100

150

300

600

0.58

0.00

0.00

0.00

0.00

0.00

1

0.23

0.10

0.05

0.02

0.01

2

0.50

0.26

0.16

0.06

0.02

3

0.63

0.38

0.25

0.10

0.04

4

0.71

0.46

0.32

0.14

0.05

5

0.76

0.52

0.38

0.18

0.07

6

0.79

0.58

0.42

0.21

0.08

7

0.82

0.62

0.47

0.24

0.10

10

0.87

0.70

0.56

0.31

0.14

14

0.90

0.77

0.65

0.39

0.19

21

0.94

0.84

0.74

0.50

0.26

28

0.95

0.87

0.79

0.57

0.32

60

0.98

0.94

0.89

0.74

0.50

90

0.98

0.96

0.92

0.81

0.60

180

0.99

0.98

0.96

0.90

0.75

365

1.00

0.99

0.98

0.95

0.86

∞

1.00

1.00

1.00

1.00

1.00

The onset of the phenomenon is assumed at 14 h from casting (t′ = t – 0.58). The values are calculated with the following formula:

$$ g_{\text{s}} = \frac{{t^{\prime } }}{{t^{\prime } + 4\sqrt {s^{3} } }}\quad {\text{with}}\,s = \frac{{2A_{\text{c}} /u}}{100}. $$

For the calculation of shrinkage at time t it can be set as

$$ \varepsilon_{\text{cd}} = \varepsilon_{{{\text{cd}}\infty }} \,g_{\text{s}}, $$

where \( \varepsilon_{{{\text{cd}}\infty }} \) is deduced from Table 1.4.

1.1.6 Table 1.6: Autogenous Shrinkage of Concrete

Autogenous shrinkage is given by

$$ \varepsilon_{\text{ca}} (t) = \varepsilon_{{{\text{ca}}\infty }} \,g_{\text{a}} (t), $$

where t is the concrete age expressed in days.

The following table shows the final value of autogenous shrinkage ε ca∞ for different mean strengths f cm of concrete. The values are deduced from the following formula:

$$ \varepsilon_{{{\text{ca}}\infty }} = 2.5(f_{\text{cm}} - 18) \cdot 10^{ - 6} $$

(in table \( \varepsilon_{{{\text{ca}}\infty }}^{*} = 1000\varepsilon_{{{\text{ca}}\infty }} \)).

Ordinary

f cm (MPa)

\( \varepsilon_{{{\text{ca}}\infty }}^{*} \)

Class

C16/20

24

0.02

C20/25

28

0.03

C25/30

33

0.04

C30/37

38

0.05

C35/43

43

0.06

C40/50

48

0.08

C45/55

53

0.09

Controlled

f cm (MPa)

\( \varepsilon_{{{\text{ca}}\infty }}^{*} \)

Class

C30/37

35

0.04

C35/43

40

0.06

C40/50

45

0.07

C45/55

50

0.08

C50/60

55

0.09

C55/67

60

0.11

C60/75

65

0.12

C70/85

75

0.14

1.1.7 Table 1.7: Autogenous Shrinkage Curves of Concrete

The following table shows the value of the function g a(t) that expresses the time law of autogenous shrinkage. The values are calculated with the following formula:

$$ g_{\text{a}} = 1 - e^{ - 0.2\sqrt t }, $$

where t is the concrete age expressed in days starting from casting.

Age

g a

0.58

0.14

1

0.18

2

0.25

3

0.29

4

0.33

5

0.36

6

0.39

7

0.41

10

0.47

14

0.53

21

0.60

28

0.65

60

0.79

90

0.85

180

0.93

365

0.98

∞

1.00

1.1.8 Chart 1.8: Concrete Shrinkage and Nominal Values

Concrete shrinkage is given by

$$ \varepsilon_{{{\text{cs}}\infty }} = \varepsilon_{\text{cd}} + \varepsilon_{\text{ca}}, $$

where

\( \varepsilon_{\text{cd}} \) :

is the component of drying shrinkage (Tables 1.4 and 1.5)

\( \varepsilon_{\text{ca}} \) :

is the component of autogenous shrinkage (Tables 1.6 and 1.7).

The nominal values of final shrinkage for RH = 60% are reported below for the design of structures, in ordinary and pre-stressed reinforced concrete, as a function of thicknesses, concrete classes and effects to be evaluated.

Type/thickness

Class

Effect

1000 ε cs∞

Ordinary RC structures medium–big

Low

Global deformation

0.38

Ordinary RC structures medium–big

Medium

Global deformation

0.36

Pre-tensioned \( \left( {t_{\text{o}} \ge 14\;{\text{ore}}} \right) \)

small

High

Pre-stress losses

0.36

Pre-tensioned \( \left( {t_{\text{o}} \ge 14\,{\text{ore}}} \right) \) medium–small

High

Pre-stress losses

0.32

Post-tensioned \( \left( {t_{\text{o}} \ge 14\,{\text{Gg}}} \right) \) medium

High

Pre-stress losses

0.28

The time of application of pre-stressing is indicated t o.

1.1.9 Table 1.9: Classes of Consistency of Fresh Concrete

Concerning workability and with reference to the subsidence a of Abrams cone (Slump test), the following classes of consistency of fresh concrete are distinguished.

Denomination

Humid

Plastic

Semi-fluid

Fluid

a (mm)

<50

50 ÷ 100

100 ÷ 150

>150

Class ISO 4103

S1

S2

S3

S4

1.1.10 Chart 1.10: Weight of Concrete Elements

With reference to concrete with normal aggregate, the specific weight of structural elements can be assumed equal to the following nominal values:

  • plain concrete 24.0 kN/m3

  • reinforced concrete 25.0 kN/m3

(coefficient of variation ≈ 0.06).

1.1.11 Table 1.11: Concrete Production Control

The control charts and the relative diagrams of a continuing concrete production in a given plant are reported below. The charts are to be used following the indications listed below:

  • each chart should refer to a homogeneous type of mix constant in time;

  • the mix should be named with the class and with a market specification of the final product;

  • basic data should be added (content of cement, water/cement ratio, admixture content and aggregate size);

  • the type of curing should be specified, also via the evaluation of β of the hardening law (see Table 1.1);

  • it has to be specified whether strength measurements are referred to the reference age (28 days) f or at earlier ages f j ;

  • 28-day tests should always be carried, tests at earlier ages only if required by early stages verifications;

  • the chart is made of consecutive sheets, one for each solar month, where normally each row corresponds to a day;

  • one concrete sample has to be taken every production day and cured in the same environment of casting;

  • a sample consists of two specimens for 28-day tests, plus two specimens for earlier ages’ tests if required;

  • data, written on the row of the day of sampling, should start with the date of test;

  • the strength measurements of the two specimens and the mean value should then be reported;

  • if measured on cubic specimens, the strength value should be reduced with a factor of 0.83 to obtain the cylinder strength f j ;

  • the mean value f j should be corrected based on the age j of the specimen to deduce the reference (28 days) strength;

  • the statistics should be calculated with the values of the set of n samples available in the last 21 solar days;

  • for sets of n < 6 samples a conventional deviation of ks = 8 MPa should be assumed;

  • for sets of 6 ≤ n ≤ 15 samples the value of k should be taken from the table reported further on;

  • for sets of 16 ≤ n ≤ 21 samples the fixed value of k = 1.48 is assumed;

  • for the n measurements available, the mean value f m and the standard deviation s are then calculated;

  • the current characteristic strength f k is finally deduced, to be compared with one of the expected classes.

The formulas for the required calculations are (where R 1 and R 2 are the cubic strengths of the two cubic specimens and t is the concrete age in days at the time of testing):

$$ \begin{aligned} f_{j} = 0.83\frac{{R_{1} + R_{2} }}{2}\quad f = \frac{{f_{j} }}{{{\text{e}}^{\beta (1 - 1/\tau )} }}\quad \tau = t/28 \hfill \\ f_{\text{m}} = \frac{{\sum\nolimits_{i = 1}^{n} {f_{i} } }}{n}\quad s = \frac{{\sqrt {\sum\nolimits_{i = 1}^{n} {\left( {f_{i} - f_{\text{m}} } \right)^{2} } } }}{n - 1}\quad f_{\text{k}} = f_{\text{m}} - ks. \hfill \\ \end{aligned} $$

n

6

7

8

9

10

11

12

13

14

15

k

1.87

1.77

1.72

1.67

1.62

1.58

1.55

1.52

1.50

1.48

In any case the values of the variation coefficients s/f m shall be less than 0.15.

The following pages contain

  • the template of control chart for data recording (with values shown as example);

  • the diagram relative to the results of testing for the visualization of the production trend (with marks shown as example using, for decimals, the comma instead of the point following the European praxis).

1.1.12 Table 1.12: Creep: Class Coefficient

The following table shows, for the different strength classes of concrete, the value of the coefficient β c of the formula:

$$ {\varphi }_{\infty } = {\beta }_{\text{c}} {\beta }_{\text{hs}} \,{\varphi }_{\text{o}} $$

for the calculation of final concrete creep. The values are calculated with

$$ \beta_{\text{c}} = \frac{1.673}{\sqrt c }, $$

where c = f c/10 is the class index and f c is the mean strength in MPa.

For the other coefficients of the formulas, one can refer to Tables 1.13 and 1.14.

Ordinary

f c (MPa)

β c

Class

C16/20

24

1.08

C20/25

28

1.00

C25/30

33

0.92

C30/37

38

0.86

C35/43

43

0.81

C40/50

48

0.76

C45/55

53

0.73

Controlled

f c (MPa)

β c

Class

C30/37

35

0.89

C35/43

40

0.84

C40/50

45

0.79

C45/55

50

0.75

C50/60

55

0.71

C55/67

60

0.68

C60/75

65

0.66

C70/85

75

0.61

1.1.13 Table 1.13: Creep: Ambient Coefficient

The following table shows, for the different relative humidities RH of the ageing environment and for the different equivalent thicknesses 2A c/u, the values of the coefficient β hs of the following formula:

$$ {\varphi }_{\infty } = {\beta }_{\text{c}} {\beta }_{\text{hs}} \,{\varphi }_{\text{o}} $$

for the calculation of concrete final creep. The values are calculated with

$$ \beta_{\text{hs}} = 0.725\left[ {1 + \frac{1 - h}{{0.46\sqrt[3]{s}}}} \right] $$

where h = HR/100 and s = (2A c/u)/100 (A c = cross-sectional area of concrete; u = its perimeter).

For the other coefficients of the formula, one can refer to Tables 1.12, 1.13, 1.14.

Relative humidity

2A c/u (mm)

Small thickness

Medium–small

Medium thickness

Medium–big

Big thickness

%

50

100

150

300

600

80

1.12

1.04

1.00

0.94

0.90

70

1.32

1.20

1.14

1.05

0.98

60

1.52

1.35

1.28

1.16

1.07

50

1.72

1.51

1.41

1.27

1.16

1.1.14 Table 1.14: Creep: Reference Coefficient

The following table shows, for the different concrete ages at loading, the values of the coefficient φ o of the following formula:

$$ {\varphi }_{\infty } = {\beta }_{\text{c}} {\beta }_{\text{hs}} \,{\varphi }_{\text{o}}, $$

for the calculation of final creep. The values are calculated with

$$ {\varphi }_{\text{o}} = \frac{4.37}{{0.1 + {t}_{\text{o}}^{0.2} }}\quad ({t}_{\text{o}} \,{\text{in}}\,{\text{days}}), $$

and should be assumed, with a coefficient of variation of about 0.20, for water/cement ratios \( {\le}0.55 \). For higher ratios, the values are greater.

For the definition of t o see Table 1.15; for the other coefficients of the formula, see Tables 1.12 and 1.13.

Age

φ o

0.58

4.38

1

3.97

2

3.50

3

3.25

4

3.08

5

2.95

6

2.85

7

2.77

10

2.59

14

2.43

21

2.25

28

2.13

60

1.85

90

1.71

180

1.49

365

1.30

1.1.15 Table 1.15: Creep: Effect of Temperature

The following table shows, as a function of the average temperature θ of concrete in the time interval \( 0 - \bar{t}_{\text{o}} \), the value of the correction factor β T with which the nominal age t o can be deduced from the effective age \( \bar{t}_{\text{o}} \) at loading:

$$ t_{\text{o}} = \beta_{\text{T}} \bar{t}_{\text{o}} $$

This nominal age is used in the formula φ o = φ o(t o) of creep (see Table 1.14). The values are calculated with the following formula:

$$ \beta_{\text{T}} = e^{{\left( {13.65 - \frac{4000}{273 + \theta }} \right)}} \quad (\theta \;{\text{in}}\;\,^\circ {\text{C}}) $$

θ

β T

10

0.62

15

0.79

20

1.00

25

1.26

30

1.57

35

1.34

40

2.39

45

2.92

50

3.55

55

4.28

60

5.14

65

6.15

70

7.30

75

8.63

1.1.16 Table 1.16: Creep: Nominal Coefficients

The nominal final values of creep coefficients are given below, for the design of ordinary and pre-stressed reinforced concrete, calculated in prevision of an environment with HR = 60% of relative humidity.

Type/thickness

Concrete class

Curing/age

Calculated effect

φ ∞

Ordinary RC struct. medium–big

Low

Natural \( \bar{t}_{\text{o}} \ge 14 \) days

Global deformation

3.1

Ordinary RC struct. medium–big

Medium

Natural \( \bar{t}_{\text{o}} \ge 14 \) days

Global deformation

2.5

Pre-tensioned small

High

Accelerated \( \bar{t}_{\text{o}} \ge 14 \) h

Pre-stress losses

3.1

Pre-tensioned medium–small

Medium

Accelerated \( \bar{t}_{\text{o}} \ge 14 \) h

Pre-stress losses

2.7

Post-tensioned medium

Medium

Natural \( \bar{t}_{\text{o}} \ge 14 \) days

Pre-stress losses

1.9

1.1.17 Table 1.17: Characteristics of Reinforcing Steel

B450C steel, used in reinforced concrete structures, is characterized by the following nominal values of characteristic yield strength f yo and ultimate strength f to

$$ \begin{aligned} f_{\text{yo}} = 450\;{\text{MPa}} \hfill \\ f_{\text{to}} = 540\;{\text{MPa}} \hfill \\ \end{aligned}$$

The following table shows the requirements for the actual values of the main mechanical characteristics of B450C steel:

Characteristics

Symbol

Value

Characteristic yield strength (fractile 5%)

f yk

\( {\ge}450\,{\text{MPa}} \)

Characteristic ultimate strength (fractile 5%)

f tk

\( {\ge}540\,{\text{MPa}} \)

Uniform elongation (fractile 10%) (=εuk)

(A gt)k

\( {\ge}7.5\% \)

Strain-hardening ratio

(f t/f y)k

 

Minimum (fractile 10%)

\( {\ge}1.15 \)

Maximum (fractile 10%)

\( {\le}1.35 \)

Overstrength ratio (fractile 10%)

(f t/f yo)k

\( {\le}1.25 \)

Bars and wires made of B450C steel have to be bendable and weldable. Other characteristics common for all types of steel are

  • \( \begin{array}{*{20}l} {{\text{specific}}\,{\text{weight}}\,\left( {\text{density}} \right)} \hfill & {{\text{g}} = 7 8 50\;{\text{kg}}/{\text{m}}^{ 3} } \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{longitudinal}}\,{\text{elastic}}\,{\text{modulus}}} \hfill & {{\text{E}}_{\text{s}} = 205000\;{\text{MPa}}} \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{coefficient}}\,{\text{of}}\,{\text{thermal}}\,{\text{expansion}}} \hfill & {{\alpha }_{\text{T}} = 1.0 \times 10^{ - 5} \;^\circ {\text{C}}^{ - 1} }. \hfill \\ \end{array} \)

1.1.18 Table 1.18: Bars and Wires: Commercial Diameters

ϕ (mm)

g (kg/m)

u (mm)

nA s (mm2)

1

2

3

4

5

6

7

8

9

6

0.222

18.9

28.3

56.5

84.8

113

141

170

198

226

254

8

0.395

25.1

50.5

101

151

201

251

302

352

402

452

10

0.617

31.4

79.0

157

236

314

393

471

550

628

707

12

0.888

37.7

113

226

339

452

566

679

791

905

1131

14

1.208

44.0

154

308

462

616

770

924

1078

1232

1385

16

1.578

50.3

201

402

603

804

1005

1206

1407

1608

1810

18*

1.998

56.6

254

509

763

1018

1272

1527

1781

2036

2290

20

2.466

62.8

314

628

942

1257

1571

1885

2199

2513

2827

22*

2.984

69.1

380

760

1140

1521

1901

2281

2661

3041

3421

24*

3.551

75.4

452

905

1357

1810

2262

2714

3167

3619

4072

25

3.853

78.5

491

982

1473

1963

2454

2945

3436

3927

4418

26*

4.168

81.7

531

1062

1593

2124

2655

3186

3717

4247

4778

28

4.834

88.0

616

1232

1847

2463

3079

3695

4310

4926

5542

30

5.559

94.3

707

1414

2121

2827

3534

4241

4948

5655

6362

32

6.313

100.5

804

1608

2413

3218

4022

4827

5631

6436

7240

  1. Note Non-standard diameters are in italic; the diameters not normalized at European level (EN10080) are marked with a star

The table gives the weight g, the perimeter u and the cross-sectional area A s for the commercial diameters ϕ of the hot-rolled ribbed wires and bars for reinforced concrete. Bars are supplied in 12-m-long bundles, wires up to diameters of 12 mm can be supplied in rolls.

1.1.19 Table 1.19: Bars for PC: Standard Diameters

The following table shows, for nominal diameters Ï• normalized by the European standard EN 10138/4, the values of

g :

unit weight

u :

perimeter of the equivalent bar

A p :

cross-sectional area

f ptk :

characteristic rupture strength

f 0.1k :

characteristic strength at 0.1% residual elongation

(f 0.1/f pt)k :

hardening (reverse) ratio (=αrk)

ε uk :

indicative value of ultimate elongation

F ptk :

characteristic value of rupture load

F 0.1k :

characteristic value of load at 0.1% residual elongation.

There are two types of steel Fe1030 and Fe1230 produced in hot-rolled bars subsequently subjected to cold-forming.

For the considered types of steel the following standard requirements are applied:

$$ {\varepsilon }_{\text{uk}} \ge 3.5\% \quad {\alpha }_{\text{rk}} \ge 0.80. $$

The other general characteristics of the type of product are

  • \( \begin{array}{*{20}l} {{\text{specific}}\,{\text{weight}}\,\left( {\text{density}} \right)} \hfill & {g = 7 8 50\,{\text{kg}}/{\text{m}}^{ 3} } \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{longitudinal}}\,{\text{elastic}}\,{\text{modulus}}} \hfill & {E_{\text{p}} = 20 5000\,{\text{MPa}}} \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{coefficient}}\,{\text{of}}\,{\text{thermal}}\,{\text{expansion}}} \hfill & {\alpha_{\text{T}} = 1.0 \times 10^{ - 5} \;^\circ {\text{C}}^{ - 1} }. \hfill \\ \end{array} \)

Ï• (mm)

g (kg/m)

u (mm)

A p (mm2)

f ptk (MPa)

f 0.1k (MPa)

α rk

ε uk (%)

F ptk (kN)

F 0.1k (kN)

20

20

2.47

62.8

314

1030

1230

830

1080

0.81

0.88

6.0

5.0

325

385

260

340

25

25

3.86

78.5

491

1030

1230

830

1080

0.81

0.88

6.0

5.0

505

600

416

530

26

26

4.17

81.7

531

1030

1230

830

1080

0.81

0.88

6.0

5.0

547

653

443

575

32

32

6.31

101

804

1030

1230

830

1080

0.81

0.88

6.0

5.0

830

870

670

1109

36

36

7.99

113

1018

1030

1230

830

1080

0.81

0.88

6.0

5.0

1050

1100

1208

1400

40

40

9.86

126

1257

1030

1230

830

1080

0.81

0.88

6.0

5.0

1295

1357

1050

1732

50

15.5

157

1960

1030

830

0.81

6.0

2020

1636

For the two types of steel in smooth and ribbed bars, the following table gives the values of

\( {\delta } = 100\left( {{\text{f}}_{\text{ptm}} - {f}_{\text{ptk}} } \right)/{f}_{\text{ptm}} \) :

percent deviation

\( {\Updelta \bar{\sigma }} \) :

fatigue limit range for 2 × 106 loading cycles.

Type

δ (%)

\( {\Updelta \bar{\sigma }}\,{\text{(MPa)}} \)

 

Fe1030

≈7.5

200

Smooth

180

Ribbed

Fe1230

≈6.0

200

Smooth

180

Ribbed

1.1.20 Table 1.20: Cold-Drawn Wire: Standard Diameters

The following table shows, for the nominal diameters Ï• normalized by the European standard EN 10138/2, the values of

g :

unit weight

u :

perimeter of the equivalent bar

A p :

cross-sectional area

f ptk :

characteristic rupture strength

f 0.1k :

characteristic strength at 0.1% residual elongation

(f 0.1/f pt)k :

hardening (reverse) ratio (=α rk)

ε uk :

indicative value of ultimate elongation

F ptk :

characteristic value of rupture load

F 0.1k :

characteristic value of load at 0.1% residual elongation.

There are four types of steels, namely Fe1570, Fe1670, Fe1770 and Fe1870, produced in smooth or indented wires by cold drawing and stretching.

For the considered steels the following standard requirements are applied:

$$ {{\varepsilon }_{\text{uk}} \ge 3.5\% } \quad {{\alpha }_{\text{rk}} \ge 0.80}. $$

The other general characteristics of the type of products are

  • \( \begin{array}{*{20}l} {{\text{specific}}\,{\text{weight}}\,\left( {\text{density}} \right)} \hfill & {g = 7850\,{\text{kg}}/{\text{m}}^{3} } \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{longitudinal}}\,{\text{elastic}}\,{\text{modulus}}} \hfill & {E_{\text{p}} = 205000\,{\text{MPa}}} \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{coefficient}}\,{\text{of}}\,{\text{thermal}}\,{\text{expansion}}} \hfill & {\alpha_{\text{T}} = 1.0 \times 10^{ - 5} \,^{ \circ } {\text{C}}^{ - 1} }. \hfill \\ \end{array} \)

The value of deviation \( \delta = 100(f_{\text{ptm}} - f_{\text{ptk}} )/f_{\text{ptm}} \) is for all types of steel \( {\delta } \cong {7}{.5\% } \).

The fatigue limit range for \( 2 \cdot 10^{6} \) loading cycles is

$$ \begin{aligned} {\Updelta \bar{\sigma }} & = 200\,{\text{MPa}}\quad {\text{for}}\,{\text{smooth}}\,{\text{wires}} \\ {\Updelta \bar{\sigma }} & = 180\,{\text{MPa}}\quad {\text{for}}\,{\text{indented}}\,{\text{wires}}. \\ \end{aligned} $$

Ï• (mm)

g (kg/m)

u (mm)

A p (mm2)

f ptk (MPa)

f 0.1k (MPa)

α rk

ε uk (%)

F ptk (kN)

F 0.1k (kN)

4.0

4.0

0.989

12.6

12.6

1770

1860

1520

1600

0.86

0.86

4.2

4.0

22.3

23.4

19.2

20.1

5.0

5.0

0.154

15.7

19.6

1670

1770

1440

1520

0.86

0.86

4.6

4.2

32.7

34.7

28.1

29.8

6.0

6.0

0.222

18.9

28.3

1670

1770

1440

1520

0.86

0.86

4.6

4.2

47.3

50.1

40.7

43.1

7.0

0.302

22.0

38.5

1670

1440

0.86

4.6

64.3

55.3

7.5

0.347

23.6

44.2

1670

1440

0.86

4.6

73.8

63.5

8.0

0.395

25.1

50.3

1670

1440

0.86

4.6

84.0

72.2

9.4

0.545

29.5

69.4

1570

1300

0.83

5.0

109.0

90.5

10.0

0.616

31.4

78.5

1570

1300

0.83

5.0

123.0

102

1.1.21 Table 1.21: Strands: Standard Diameters

The following table shows, for the nominal diameters Ï• normalized by the European standard EN 10138/3, the values of

g :

unit weight

u :

perimeter of the equivalent bar

A p :

cross-sectional area

f ptk :

characteristic rupture strength

f 0.1k :

characteristic strength at 0.1% residual elongation

(f 0.1/f pt)k :

hardening (reverse) ratio (=α rk)

ε uk :

indicative value of ultimate elongation

F ptk :

characteristic value of rupture load

F 0.1k :

characteristic value of load at 0.1% residual elongation.

There are strands made of three wires 3W, seven wires 7W and compacted strands of seven wires 7WC obtained from cold-drawn wires of small diameters (2.4 ÷ 6.0 mm), in six types of steels, namely Fe1700, Fe1770, Fe1820, Fe1860, Fe1960 and Fe2060.

For the concerned steels there are the following standard requirements:

$$ {{\varepsilon }_{\text{uk}} \ge 3.5\% } \quad {{\alpha }_{\text{rk}} \ge 0.80} $$

The other general characteristics of the type of products are

  • \( \begin{array}{*{20}l} {{\text{specific}}\,{\text{weight}}\,\left( {\text{density}} \right)} \hfill & {g = 7850\,{\text{kg}}/{\text{m}}^{3} } \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{longitudinal}}\,{\text{elastic}}\,{\text{modulus}}} \hfill & {E_{\text{p}} = 195000\,{\text{MPa}}} \hfill \\ \end{array} \)

  • \( \begin{array}{*{20}l} {{\text{coefficient}}\,{\text{of}}\,{\text{thermal}}\,{\text{expansion}}} \hfill & {\alpha_{\text{T}} = 1.0 \times 10^{ - 5} \,^{ \circ } {\text{C}}^{ - 1} }. \hfill \\ \end{array} \)

The value of deviation \( \delta = {100}(f_{\text{ptm}} - f_{\text{ptk}} )/f_{\text{ptm}} \) is for all steels 7.5%.

The fatigue limit range for 2 × 106 loading cycles is

$$ \begin{aligned} {\Updelta \bar{\sigma }} & = 190\,{\text{MPa}}\quad {\text{for}}\,{\text{smooth}}\,{\text{wires}} \\ {\Updelta \bar{\sigma }} & = 170\,{\text{MPa}}\quad {\text{for}}\,{\text{indented}}\,{\text{wires}}. \\ \end{aligned} $$

Ï• (mm)

g (kg/m)

u (mm)

A p (mm2)

f ptk (MPa)

f 0.1k (MPa)

α rk

ε uk (%)

F ptk (kN)

F 0.1k (kN)

Strand 3W

5.2

0.107

16.3

13.6

1960

1670

0.85

4.6

26.7

22.7

5.2

0.107

16.3

13.6

2060

1750

0.85

4.2

28.0

23.8

6.5

0.166

20.4

21.2

1860

1580

0.85

4.6

39.4

33.5

6.5

0.166

20.4

21.2

1960

1670

0.85

4.6

41.5

35.3

6.8

0.184

21.4

23.4

1860

1580

0.85

4.6

43.5

37.0

7.5

0.228

23.6

29.0

1860

1580

0.85

4.6

53.9

45.8

Strand 7W

7.0

0.236

22.0

30.0

2060

1750

0.85

4.6

61.8

52.5

9.0

0.393

28.3

50.0

1860

1580

0.85

5.0

93.0

79.0

11.0

0.590

34.6

75.0

1860

1580

0.87

5.0

139

118

12.5

0.730

39.3

93.0

1860

1580

0.85

5.0

173

147

13.0

0.785

40.8

100

1860

1580

0.85

5.0

186

158

15.2

1.090

47.8

139

1770

1500

0.85

5.0

246

209

15.2

1.090

47.8

139

1860

1580

0.85

5.0

258

219

16.0

1.180

50.3

150

1770

1500

0.85

5.0

265

225

16.0

1.180

50.3

150

1860

1580

0.85

5.0

279

237

18.0

1.570

56.5

200

1770

1500

0.85

5.0

354

301

Compacted 7WC

12.7

0.890

40.0

112

1860

1580

0.85

5.0

209

178

15.2

1.295

47.8

165

1820

1580

0.85

5.0

300

225

18.0

1.750

56.5

223

1700

1580

0.85

5.0

380

323

1.1.22 Chart 1.22: Concrete σ–ε Models

For the analysis of a section in reinforced or pre-stressed concrete at the ultimate limit state of rupture, one of the three models σ–ε for concrete described below can be adopted (see also Fig. 1.28).

Classes up to C50/60 ( f ck ≤ 50 MPa)

For all models,

  • ultimate compressive strain of the most stressed fibre \( \varepsilon_{\text{cu}} = 0.35\% \)

  • mean ultimate strain of concrete in compression \( \varepsilon_{\text{c2}} = 0.20\% \)

  • compressive strength of concrete \( f_{\text{cd}} = \alpha_{\text{cc}} f_{\text{ck}} /\gamma_{\text{C}} \)

  • tensile strength of concrete \( f_{\text{ctd}} = 0. \)

Parabola–rectangle model

$$ \begin{array}{*{20}l} {{\sigma }_{\text{c}} = [1 - (1 - {\varepsilon }_{\text{c}} /{\varepsilon }_{{{\text{c}2}}} )^{2} ]\,{f}_{\text{cd}} } \hfill & {{\text{for}}\,0 \le {\varepsilon }_{\text{c}} < {\varepsilon }_{{{\text{c}2}}} } \hfill \\ {{\sigma }_{\text{c}} = {f}_{\text{cd}} } \hfill & {{\text{for}}\,{\varepsilon }_{{{\text{c}2}}} \le {\varepsilon }_{\text{c}} \le {\varepsilon }_{\text{cu}} } \hfill \\ \end{array} $$

with \( \varepsilon_{{{\text{c}}2}} = 0.2\% \).

Triangle–rectangle model

$$ \begin{array}{*{20}l} {{\sigma }_{\text{c}} = ({\varepsilon }_{\text{c}} /{\varepsilon }_{{{\text{c}3}}} )\,{\text{f}}_{\text{cd}} } \hfill & {{\text{for}}\,0 \le {\varepsilon }_{\text{c}} { < \varepsilon }_{{{\text{c}3}}} } \hfill \\ {{\sigma }_{\text{c}} = {\text{f}}_{\text{cd}} } \hfill & {{\text{for}}\,{\varepsilon }_{{{\text{c}3}}} \le {\varepsilon }_{\text{c}} \le {\varepsilon }_{\text{cu}} } \hfill \\ \end{array} $$

with \( \varepsilon_{{{\text{c}}3}} = 0.15\% \).

Rectangular model

$$ \begin{array}{*{20}l} {{\sigma }_{\text{c}} = ({\varepsilon }_{\text{c}} /{\varepsilon }_{{{\text{c}3}}} )\,{f}_{\text{cd}} } \hfill & {{\text{for}}\,0 \le {\varepsilon }_{\text{c}} { < \varepsilon }_{{{\text{c}3}}} } \hfill \\ {{\sigma }_{\text{c}} = {\text{f}}_{\text{cd}} } \hfill & {{\text{for}}\,{\varepsilon }_{{{\text{c}3}}} \le {\varepsilon }_{\text{c}} \le {\varepsilon }_{\text{cu}} } \hfill \\ \end{array} $$

with \( \varepsilon_{{{\text{c}}4}} = 0.07\% ( = 0.2\varepsilon_{\text{cu}} ) \).

Classes greater than C50/60 ( f ck  > 50 MPa)

For all models,

  • ultimate compressive strain of the most stressed fibre

    \( \varepsilon_{\text{cu}} = 0.26 + 3.5[(90 - f_{\text{ck}} )/100]^{4} \% \)

  • mean ultimate strain of concrete in compression

    \( \varepsilon_{{{\text{c}}2}} = 0.20 + 0.0085(f_{\text{ck}} - 50)^{0.53} \% \)

  • compressive strength of concrete \( f_{\text{cd}} = \alpha_{\text{cc}} f_{\text{ck}} /\gamma_{\text{C}} \)

  • tensile strength of concrete \( f_{\text{ctd}} = 0. \)

Parabola–rectangle model

$$ \begin{array}{*{20}l} {{\sigma }_{\text{c}} = [1 - (1 - {\varepsilon }_{\text{c}} /{\varepsilon }_{{{\text{c}2}}} )^{\text{n}} ]\,{f}_{\text{cd}} } \hfill & {{\text{for}}\,{0} \le {\varepsilon }_{\text{c}} < {\varepsilon }_{\text{cr}} } \hfill \\ {{\sigma }_{\text{c}} = {\text{f}}_{\text{cd}} } \hfill & {{\text{for}}\,{\varepsilon }_{\text{cr}} \le {\varepsilon }_{\text{c}} < {\varepsilon }_{\text{cu}} } \hfill \\ \end{array} $$

with \( n = 1.4 + 23.4[(90 - f_{\text{ck}} )/100]^{4} \).

Triangle–rectangle model

$$ \begin{array}{*{20}l} {{\sigma }_{\text{c}} = {\varepsilon }_{\text{c}} /{\varepsilon }_{{{\text{c}}3}} \,{f}_{\text{cd}} } \hfill & {{\text{for}}\,{0} \le {\varepsilon }_{\text{c}} < {\varepsilon }_{{{\text{c}3}}} } \hfill \\ {{\sigma }_{\text{c}} = {f}_{\text{cd}} } \hfill & {{\text{for}}\,{\varepsilon }_{{{\text{c}3}}} \le {\varepsilon }_{\text{c}} \le {\varepsilon }_{\text{cu}} } \hfill \\ \end{array} $$

with \( \varepsilon_{{{\text{c}}3}} = 0.15 + 0.55[(f_{\text{ck}} - 50)/400] \).

Rectangular model

$$ \begin{array}{*{20}l} {{\sigma }_{\text{c}} = 0} \hfill & {{\text{for}}\,{0} \le {\varepsilon }_{\text{c}} < {\varepsilon }_{{{\text{c}}4}} } \hfill \\ {{\sigma }_{\text{c}} = {\eta }\,{f}_{\text{cd}} } \hfill & {{\text{for}}\,{\varepsilon }_{{{\text{c}}4}} \le {\varepsilon }_{\text{c}} \le {\varepsilon }_{\text{cu}} } \hfill \\ \end{array} $$

with \( \varepsilon_{{{\text{c}}4}} = \lambda \varepsilon_{\text{cu}} \) and

$$ \begin{aligned} \eta = 1.0 - (f_{\text{ck}} - 50)/200 \hfill \\ \lambda = 0.2 + (f_{\text{ck}} - 50)/400 \hfill \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Toniolo, G., di Prisco, M. (2017). General Concepts on Reinforced Concrete. In: Reinforced Concrete Design to Eurocode 2. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-319-52033-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52033-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52032-2

  • Online ISBN: 978-3-319-52033-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics