Skip to main content

Blending Two Feedback Laws

  • Chapter
  • First Online:
Design and Analysis of Control Systems

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 813 Accesses

Abstract

In this chapter, the problem under consideration is the synthesis of a stabilizing feedback law for a class of nonlinear systems. These systems have a structural obstacle for the design of a single continuous controller employing the backstepping technique. However, when some boundedness conditions on the vector field are satisfied, a feedback law that practically stabilizes a compact set can be designed. By ensuring that this set is contained in the basin of attraction of a controller that locally stabilizes the equilibrium of the origin, a hybrid feedback law that globally stabilizes the origin can be designed by blending these feedback laws according to appropriate domains of the state space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Theorem 2.25.

  2. 2.

    The conditions and \(\varepsilon >0\) imply the lower bound \(K_{1}>0.6\).

  3. 3.

    Regarding q, here it is shown only its first component, because the second one does not change.

  4. 4.

    Note that with these constraints, \(V(x_1^*,x_2^*)\le a'\).

  5. 5.

    Recall that the inequality \(L_{h_1}V_1(x_1,\psi _1(x_1),u)\le (1-\varepsilon )\alpha (V_1(x_1))+\varepsilon \alpha (M)\) is assumed.

  6. 6.

    Let \(|x|_{a'}:={{\mathrm{\mathtt {dist}}}}(x,\varOmega _{\le a'}(V))\). Since \(\alpha \in \mathscr {K}_\infty \), define the function \(\alpha _{a'}(|x|):=\alpha (|(x_1,x_2)|_{a'})=-\alpha (a')+\alpha (V(x_1,x_2))\) which is of class \(\mathscr {K}_\infty \). Thus, for every \((x_1,x_2)\in \varOmega _{\ge a'}(V)\), \(L_{f_h}V(x_1,x_2,\tilde{\psi })\le -\alpha _{a'}(|x|_{a'})\) and Eq. (2.39b) is satisfied.

  7. 7.

    See Theorem A.36.

  8. 8.

    Note that, if \(f_2(0,0)=0\) the feedback law \(\varphi _b\) would be discontinuous at the origin.

References

  1. Andrieu V, Prieur C (2010) Uniting two control Lyapunov functions for affine systems. IEEE Trans Autom Control 55(8):1923–1927

    Article  MathSciNet  Google Scholar 

  2. Andrieu V, Tarbouriech S (2013) Global asymptotic stabilization of some bilinear systems by hybrid state and output feedback. IEEE Trans Autom Control 58(6):1602–1608

    Article  Google Scholar 

  3. Chaillet A (2006) On stability and robustness of nonlinear systems: applications to cascaed systems. PhD thesis, Université Paris XI Orsay

    Google Scholar 

  4. Chaillet A, Loría A (2008) Uniform semiglobal practical asymptotic stability for non-autonomous cascaded systems and applications. Automatica 44:337–347

    Article  MathSciNet  MATH  Google Scholar 

  5. Freeman RA, Kokotovi’c PV (2008) Robust nonlinear control design: statespace and Lyapunov techniques. Birkhäuser

    Google Scholar 

  6. Goebel R, Prieur C, Teel AR (2009) Smooth patchy control Lyapunov functions. Automatica 45(3):675–683

    Article  MathSciNet  MATH  Google Scholar 

  7. Goebel R, Sanfelice RG, Teel AR (2012) Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press

    Google Scholar 

  8. Goebel R, Sanfelice RG, Teel AW (2009) Hybrid dynamical systems. IEEE Control Syst Mag 29(2):28–93

    Article  MathSciNet  Google Scholar 

  9. Goebel R, Teel AR (2006) Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42:573–587

    Article  MathSciNet  MATH  Google Scholar 

  10. Grognard F, Sepulchre R, Bastin G (1999) Global stabilization of feedforward systems with exponentially unstable Jacobian linearization. Syst Control Lett 37(2):107–115

    Article  MathSciNet  MATH  Google Scholar 

  11. Hespanha JP, Morse AS (1999) Stabilization of nonholonomic integrators via logic-based switching. Automatica, Spec Issue Hybrid Syst 35(3):385–393

    MathSciNet  MATH  Google Scholar 

  12. Hespanha J, Liberzon D, Morse AS (2004) Hysteresis-based switching algorithms for supervisory control of uncertain systems. Automatica 39(2):263–272

    Article  MathSciNet  MATH  Google Scholar 

  13. Isidori A (1999) Nonlinear control systems II, Ser. Communications and control engineering. Springer

    Google Scholar 

  14. Jbilou K, Messaoudi A, Tabaâ K (2004) Some schur complement identities and applications to matrix extrapolation methods. Linear Algebra Appl 392:195–210

    Article  MathSciNet  MATH  Google Scholar 

  15. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall

    Google Scholar 

  16. Kokotovi’c PV (1992) The joy of feedback: nonlinear and adaptative. IEEE Trans Autom Control 12(3):7–17

    Google Scholar 

  17. Krsti’c M, Kanellakopoulos I, Kokotovi’c PV (1995) Nonlinear and adaptive control design. Wiley

    Google Scholar 

  18. Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the EEE international symposium on computer aided control systems design, Taipei, Republic of China, September 2004, pp 284–289

    Google Scholar 

  19. Mayhew CG, Sanfelice RG, Teel AR (2011) Further results on synergistic Lyapunov functions and hybrid feedback design through backstepping. In: Joint conference on decision and control and european control conference (CDC-ECC), Orlando, Florida, pp 7428–7433

    Google Scholar 

  20. Mazenc F, Praly L (1996) Adding integrations, saturated controls, and stabilization for feedforward systems. IEEE Trans Autom Control 41(11):1559–1578

    Article  MathSciNet  MATH  Google Scholar 

  21. Pan Z, Ezal K, Krener A, Kokotovic PV (2001) Backstepping design with local optimality matching. IEEE Trans Autom Control 46(7):1014–1027

    Article  MathSciNet  MATH  Google Scholar 

  22. Prieur C (2001) Uniting local and global controllers with robustness to vanishing noise. Math Control Signals Syst 14:143–172

    Article  MathSciNet  MATH  Google Scholar 

  23. Prieur C, Goebel R, Teel AR (2007) Hybrid feedback control and robust stabilization of nonlinear systems. IEEE Trans Autom Control 52(11):2103–2117

    Article  MathSciNet  Google Scholar 

  24. Stein Shiromoto H (2014) Stabilisation sous contraintes locales et globales. PhD thesis, Université Grenoble Alpes

    Google Scholar 

  25. Stein Shiromoto H, Andrieu V, Prieur C (2011) Combining a backstepping controller with a local stabilizer. In: Proceedings of the American control conference (ACC), San Francisco, CA, United States of America, pp 3197–3202

    Google Scholar 

  26. Stein Shiromoto H, Andrieu V, Prieur C (2012) Union d’une commande par backstepping avec une commande locale," in Proceedings of the 7th Conférence Internationale Francophone d’Automatique (CIFA), Grenoble, France, pp 371–375

    Google Scholar 

  27. Stein Shiromoto H, Andrieu V, Prieur C (2013) Relaxed and hybridized backstepping. IEEE Trans Autom Control 58(12):3236–3241

    Article  Google Scholar 

  28. Zhang F (2005) The Schur complement and its applications. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Stein Shiromoto .

Appendix of Chap. 2

Appendix of Chap. 2

2.1.1 The Backstepping Procedure

The backstepping is a well-known method to design a feedback law rendering a class of cascaded systems asymptotically stable. This procedure is recalled here. For more details, the interested reader may address [13, 15,16,17] and references therein.

Consider the system

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{x}_1&{}=&{}f_1(x_1,x_2)\\ \dot{x}_2&{}=&{}f_2(x_1,x_2)u \end{array} \right. \end{aligned}$$
(2.37)

where the functions \(f_1:\mathbb {R}^n\rightarrow \mathbb {R}^{n-1}\) and \(f_2:\mathbb {R}^n\rightarrow \mathbb {R}_{\ne 0}\) are of class \(\mathscr {C}^1\).

Assume that, there exists a feedback law \(\phi _1\in \mathscr {C}^1(\mathbb {R},\mathbb {R})\) with \(\phi _1(0)=0\) for the \(x_1\)-subsystem rendering the equilibrium of the origin globally asymptotically stable for

$$\begin{aligned} \dot{x}_1=f_1(x_1,\phi _1(x_1)). \end{aligned}$$

From the converse Lyapunov theorem,Footnote 7 there exist a proper function \(V_1\in (\mathscr {C}^1\cap \mathbf P )(\mathbb {R}^{n-1},\mathbb {R}_{\ge 0})\) and a function \(\alpha _1\in \mathscr {K}_\infty \) such that the Lie derivative of \(V_1\) along the vector field \(f_1\) yields the inequality \(L_{f_1}V_1(x_1,\phi _1(x_1))\le -\alpha _1(|x_1|)\), for every \(x_1\in \mathbb {R}^{n-1}\).

Fix the pair \((x_1,x_2)\in \mathbb {R}^{n-1}\times \mathbb {R}\) and consider the function

$$\begin{aligned} \begin{array}{rrcl} \eta _{x_1,x_2}:&{}[0,1]&{}\rightarrow &{}\mathbb {R}\\ &{}s&{}\mapsto &{}sx_2+(1-s)\phi _1(x_1). \end{array} \end{aligned}$$

Since for every pair \((x_1,x_2)\in \mathbb {R}^{n-1}\times \mathbb {R}\), the function \(f_2\) is nonzero, by letting , system (2.37) can be rewritten as

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{x}_1&{}=&{}f_1(x_1,\phi _1(x_1))+(x_2-\phi _1(x_1))\displaystyle \int \limits _0^1 \dfrac{\partial f_1}{\partial \eta _{x_1,x_2}}(x_1,\eta _{x_1,x_2}(s))\,ds\\ \dot{x}_2&{}=&{}v, \end{array} \right. \end{aligned}$$

where \(v\in \mathbb {R}\).

Consider the change of variables \(e:=x_2-\phi _1(x_1)\). The time derivative of e yields the differential equation \(\dot{e}=\dot{x}_2-L_{f_1}\phi _1(x_1,x_2)\). System (2.37) rewritten in the new variable e is given by

$$\begin{aligned} \left\{ \begin{array}{rcl} \dot{x}_1&{}=&{}f_1(x_1,\phi _1(x_1))+e\displaystyle \int \limits _0^1 \dfrac{\partial f_1}{\partial \eta _{x_1,x_2}}(x_1,\eta _{x_1,x_2}(s))\,ds\\ \dot{e}&{}=&{}w, \end{array}\right. \end{aligned}$$
(2.38)

where \(w=v-L_{f_1}\phi _1(x_1,x_2)\). System (2.38) is denoted by \(\dot{x}=f(x)\).

Consider the candidate Lyapunov function for system (2.38) given by

$$\begin{aligned} V(x_1,e)=V_1(x_1)+\dfrac{e^2}{2}. \end{aligned}$$

Its Lie derivative along the vector field f yields the inequality

$$\begin{aligned} \begin{array}{rcl} L_fV(x_1,e)\le & {} \alpha _1(|x_1|)+e\left[ \dfrac{\partial V_1}{\partial x_1}(x_1)\cdot \displaystyle \int \limits _0^1\dfrac{\partial f_1}{\partial \eta _{x_1,x_2}}(x_1,\eta _{x_1,x_2}(s))\,ds+w\right] . \end{array} \end{aligned}$$

Consider the feedback law defined by the equation

$$\begin{aligned} \phi (x_1,e)=-\dfrac{\partial V_1}{\partial x_1}(x_1)\cdot \int \limits _0^1\dfrac{\partial f_1}{\partial \eta _{x_1,x_2}}(x_1,\eta _{x_1,x_2}(s))\,ds-Ke, \end{aligned}$$

where \(K>0\) is a constant value. Letting \(w=\phi (x_1,e)\), the Lie derivative \(L_fV\) yields the inequality

$$\begin{aligned} L_fV(x_1,e)\le -\alpha _1(|x_1|)-Ke^2 \end{aligned}$$

which holds for every \((x_1,e)\in \mathbb {R}^{n-1}\times \mathbb {R}\). Thus, the equilibrium of the origin is globally asymptotically stable for system (2.38) in closed loop with \(\phi \). Hence, it is also asymptotically stable for (2.37).

Since \(\phi (x_1,e)=w=v-L_{f_1}\phi _1(x_1,x_2)\), it follows that

$$\begin{aligned} v = -\dfrac{\partial V_1}{\partial x_1}(x_1)\cdot \int \limits _0^1\dfrac{\partial f_1}{\partial \eta _{x_1,x_2}}(x_1,\eta _{x_1,x_2}(s))\,ds-(x_2-\phi _1(x_1))+L_{f_1}\phi _1(x_1,x_2). \end{aligned}$$

Therefore, the feedback law defined, for every \((x_1,x_2)\in \mathbb {R}^{n-1}\times \mathbb {R}\), byFootnote 8

$$\begin{aligned} \varphi _b(x_1,x_2)=&\dfrac{1}{f_2(x_1,x_2)}\bigg [-\dfrac{\partial V_1}{\partial x_1}(x_1)\cdot \int \limits _0^1\dfrac{\partial f_1}{\partial \eta _{x_1,x_2}}(x_1,\eta _{x_1,x_2}(s))\,ds-(x_2-\phi _1(x_1))\\&\ +L_{f_1}\phi _1(x_1,x_2)\bigg ]. \end{aligned}$$

rends the equilibrium of the origin globally asymptotically stable for (2.37) in closed loop.

2.1.2 The Schur’s Complement

The Schur’s complement is employed in this chapter to design a linear feedback law rendering the origin locally asymptotically stable. For further reading on the Schur’s complement, the interested reader is invited to address [14, 28]. Here, some of the basic concepts are recalled.

Consider the matrices \(A\in \mathbb {R}^{p\times p}\), \(B\in \mathbb {R}^{p\times q}\), \(C\in \mathbb {R}^{q\times p}\), \(D\in \mathbb {R}^{q\times q}\) and the block matrix \(M\in \mathbb {R}^{(p+q)\times (p+q)}\) given by

$$\begin{aligned} M=\begin{bmatrix} A&B\\ C&D \end{bmatrix}, \end{aligned}$$

and assume that \(\det (A)\ne 0\). Consider a vector \(z=(x,y)\in \mathbb {R}^p\times \mathbb {R}^q\). The linear system \(Mz^T=0\), i.e., the system

$$\begin{aligned} \left\{ \begin{array}{rclrl} Ax&{}+&{}By&{}=&{}0,\\ Cx&{}+&{}Dy&{}=&{}0. \end{array}\right. \end{aligned}$$

Multiplying the first equation by \(-CA^{-1}\), on the left, and adding it to the second one, the x-component of the vector is eliminated, and the linear system is given by

$$\begin{aligned} (D-CA^{-1}B)y=0. \end{aligned}$$

The matrix \(S=D-CA^{-1}B\) is called Schur complement of A in M (cf. [14]).

The next result is recalled from [28] and adapted to the context of this book.

Theorem 2.25

Let \(M\in \mathbb {R}^{(p+q)\times (p+q)}\) be a symmetric matrix given by

$$\begin{aligned} M=\begin{bmatrix} A&B\\ B^T&D \end{bmatrix}, \end{aligned}$$

where \(A\in \mathbb {R}^{p\times p}\) and \(\det (A)\ne 0\). Then, \(M\succ 0\) if and only if \(A\succ 0\) and \((D-B^T A^{-1}B)\succ 0\).

From [14, Proposition 1], under the hypothesis of Theorem 2.25, \(M\succ 0\) if and only if \(D\succ 0\) and \(A-B D^{-1}B^T\succ 0\).

2.1.3 A Remark on the Lyapunov Sufficient Conditions for Practical Stability

Recall the concept of global practical asymptotic stabilizability stated in Definition 2.16.

Under Assumptions 2.1 and 2.2, for every value \(a>0\), there exists (cf. Proposition 2.4, above.) a feedback law \(\varphi _g:\mathbb {R}^n\rightarrow \mathbb {R}\) such the set \(\mathbf B _{\le a}(\mathbf A )\) contains a compact invariant set that is globally asymptotically stable for the closed-loop system (\(\Sigma _h(\varphi _g)\)), where \(\mathbf A \) is the set given by

$$\begin{aligned} \mathbf A =\{(x_1,x_2)\in \mathbb {R}^{n-1}\times \mathbb {R}:V_1(x_1)\le M,x_2=\psi _1(x_1)\}. \quad (2.8) \end{aligned}$$

Because of the value \(K_V\), the feedback law \(\varphi _g\) is parametrized by a (cf. the proof of Proposition 2.4). Consequently, the closed-loop system (\(\Sigma _h(\varphi _g)\)) and the candidate Lyapunov function

$$\begin{aligned} \begin{array}{rcl} V:\mathbb {R}^{n-1}\times \mathbb {R}&{}\rightarrow &{}\mathbb {R}\\ (x_1,x_2)&{}\mapsto &{}V_1(x_1)+\dfrac{K_V}{2}(x_2-\psi _1(x_1))^2 \end{array}\quad (2.24) \end{aligned}$$

are also parametrized by a.

From now on, the dependence of aforementioned functions on the parameter a is highlighted by adding it as subscript, for instance, (\(\Sigma _h(\varphi _{g,a})\)).

The following theorem is presented in [3, Theorem 7.5] and it has been reformulated to the context of this chapter. It provides a sufficient condition for the stability of a compact invariant set when the candidate Lyapunov function and the feedback law depend on the parameter.

Theorem 2.26

(Lyapunov sufficient conditions for global practical asymptotic stability) Let \(\mathbf A \subset \mathbb {R}^n\) be a compact set. Suppose that, given any \(a>0\), there exist a continuous differentiable Lyapunov function \(V_a:\mathbb {R}^n\rightarrow \mathbb {R}_{\ge 0}\), and functions \(\underline{\alpha }_a\), \(\overline{\alpha }_a\) and \(\alpha _a\) of class \(\mathscr {K}_\infty \) such that, for every \(x\in \mathbf B _{\ge a}(\mathbf A )\), the following inequalities

$$\begin{aligned} \underline{\alpha }_a(|x|_\mathbf A )\le V_a(x)\le \overline{\alpha }_a(|x|_\mathbf A ), \end{aligned}$$
(2.39a)
$$\begin{aligned} L_{f_h}V_a(x,\varphi _{g,a})\le -\alpha _a(|x|_\mathbf A ), \end{aligned}$$
(2.39b)
$$\begin{aligned} \lim _{a\rightarrow 0} \underline{\alpha }_a^{-1}\circ \overline{\alpha }_a(a)=0 \end{aligned}$$
(2.39c)

hold. Then, the set \(\mathbf A \) is globally practically asymptotically stable for the closed-loop system \(\Sigma _h(\varphi _g)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Stein Shiromoto, H. (2017). Blending Two Feedback Laws. In: Design and Analysis of Control Systems. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-52012-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52012-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52011-7

  • Online ISBN: 978-3-319-52012-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics