Skip to main content

Laser Beam Micro-cutting

  • Chapter
  • First Online:
Non-traditional Micromachining Processes

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

  • 1461 Accesses

Abstract

This chapter gives a brief overview of laser beam cutting. An illustration of basic fundamentals of laser material interaction and material removal is given here which considers generation of photon and interaction with electron to generate heat, absorption of heat, phase transformation, plasma generation, ablation and removal mechanism of cut material from the irradiate region at dry condition. An experimental study of laser beam cutting of Inconel 625 superalloy at dry condition is given at the end of this chapter. During this experimental study effect of different process parameters on machining characteristics also discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Küper, S., Stuke, M. (1992). Applied physics letters. 60, 1633.

    Google Scholar 

  2. Roy, N., Kuar, A.S., Mitra, S, Acherjee, B. (2015). Nd:YAG laser microdrilling of SiC-30BN nanocomposite: Experimental study and process optimization. Lasers based manufacturing, Dixit, U.S. & Joshi, S.N. (Ed.) Topics in Mining, Metallurgy, Materials Engineering. Chapter 17, ISBN 978-81-322-2352-8, © Springer India 2015, PP 317–341.

    Google Scholar 

  3. Steen, W.M. (1991). Laser Materials Processing. Springer, London.

    Google Scholar 

  4. C.W. White, M.J. Aziz (1987), Surface Alloying by Ion, Electron and Laser Beams, eds. By L.E. Rehn, S.T. Picraux, H. Wiedersich, ASM, Metals Park, Ohio, p. 19

    Google Scholar 

  5. Perry M.D., Pennington D., Stuart B.C., Tietbohl G., Britten J.A., Brown C., Herman S., Golick B., Kartz M., Miller J., Powell H.T., Vergino M., Yanovsky V. (1999), Optics Letter. 24, 160–162

    Google Scholar 

  6. Collins G.W., Celliers P.M., DaSilva L.B., Cauble R., Gold D.M., Foord M.E., Holmes N.C., Hammel B.A., Wallace R.J., Ng A., Physics Review Letters. 87(16), art. no. 165504 (2001)

    Google Scholar 

  7. Bäuerle, D. (2000). Laser Processing and Chemistry. Springer, Heidelberg.

    Google Scholar 

  8. Biyikli, S., Modest, M.F. (1988). Beam expansion and focusing effects on evaporative laser cutting. ASME Journal of Heat Transfer 110:529–532.

    Google Scholar 

  9. Modest MF, Abakians H (1986) Evaporative cutting of a semi-infinite body with a moving CW laser. ASME Journal of Heat Transfer 108:602–607.

    Google Scholar 

  10. Tsai CH, Chen CJ (2004) Application of iterative path revision technique for laser cutting with controlled fracture. Optics and Lasers in Engineering 41:189–204.

    Google Scholar 

  11. Schulz W, Simon G, Urbassek HM, Decker I (1987) On laser fusion cutting of metals. Journal of Physics D: Applied Physics 20:481–488.

    Google Scholar 

  12. O’Neill W, Gabzdyl JT (2000) New developments in laser-assisted oxygen cutting. Optics and Lasers in Engineering 34:355–367.

    Google Scholar 

  13. Schuöcker D (1986) Theoretical model of reactive gas assisted laser cutting including dynamic effects. Proceedings of SPIE (International Society for Optical Engineering) 650:210–219.

    Google Scholar 

  14. Duley WW (1996) UV laser effects and applications in material science. Cambridge University Press, Cambridge.

    Google Scholar 

  15. Henyk M, Vogel N, Wolfframm D,Tempel A, Reif J. (1999), Femtosecond laser ablation from dielectric materials: Comparison to arc discharhe erosion, Applied physics A 69:1 pp: S355–S358.

    Google Scholar 

  16. Liu X, Du D, Mourou G; laser ablation and micromachining with ultrashort pulse, IEEE journal of electronics, vol 33:10, 1997.

    Google Scholar 

  17. Lamikiz A, Lacalle LN, Sanchez JA, Pozo DD, Etayo JM, Lopez JM (2005) CO2 laser cutting of advanced high strength steels (AHSS). Applied Surface Science 242:362–368.

    Google Scholar 

  18. Olsen F (1981) Studies of sheet metal cutting with plane polarised CO2 laser. In: Proceedings of Laser’81 optoelectronics conference, Munich. Springer, Berlin, pp 227–231.

    Google Scholar 

  19. Fieret J, Terry MJ, Ward BA (1986) Aerodynamic interactions during laser cutting. Proc SPIE 668:53–62.

    Google Scholar 

  20. Man HC, Duan J, Yue TM (1999) Analysis of the dynamic characteristics of gas flow inside a laser cut kerf under high cut-assist gas pressure. Journal of Physics D: Applied Physics 32:1469–1477.

    Google Scholar 

  21. Gabzdyl JT, Steen WM, Cantello M (1987) Nozzle beam alignment for laser cutting. In: ICALEO’87 proceedings, San Diego. Springer, Berlin/IFS Kempston, pp 143–148.

    Google Scholar 

  22. Gabzdyl J (1996) Process assist gas for cutting of steels. Industrial Laser User Aug 23–24.

    Google Scholar 

  23. Arata Y, Maruo H, Miyamoto I, Takeuchi S (1981) Quality in laser-gas-cutting stainless steel and its improvement. Transactions of JWRI 10:129–139.

    Google Scholar 

  24. Duan J, Man HC, Yue TM (2001c) Modelling the laser fusion cutting process: III. Effects of various process parameters on cut kerf quality. Journal of Physics D: Applied Physics 34:2143–2150.

    Google Scholar 

  25. Tani G, Tomesani L, Campana G (2003) Prediction of melt geometry in laser cutting. Applied Surface Science 208–209:142–147.

    Google Scholar 

  26. Dong-Gyn AHN, Kyun-Won BYUN (2009), Influence on cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd:YAG laser, Transactions of nonferrous metals society of China, vol.19, S32–S39.

    Google Scholar 

  27. Powell, J. (1993). CO 2 laser cutting. Springer, London.

    Google Scholar 

  28. Chen SL (1999) The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting. Journal of Materials Processing Technology 88:57–66.

    Google Scholar 

  29. Dawson P (1996) The use of lasers in the die board industry. Industrial Laser User (3):21–22.

    Google Scholar 

  30. Dinda G.P., Dasgupta A.K., Mazumder J., Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability, Materials Science and Engineering A 509 (2009) 98–104.

    Google Scholar 

  31. Biswas R., Kuar A.S., Sarkar S., Mitra S. (2010),A parametric study of pulsed Nd:YAG laser micro-drilling of gamma-titanium aluminide, journal of Optics & Laser Technology, 42 23–31.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from UGC, New Delhi under the scheme of Rajiv Gandhi national Fellowship scheme and technical equipment support from UGC, New Delhi under the CAS Ph-IV program of Production Engineering Dept. of Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roy, N., Kuar, A.S., Mitra, S. (2017). Laser Beam Micro-cutting. In: Kibria, G., Bhattacharyya, B., Davim, J. (eds) Non-traditional Micromachining Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-52009-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52009-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52008-7

  • Online ISBN: 978-3-319-52009-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics