Skip to main content

Recent Advancement on Ultrasonic Micro Machining (USMM) Process

  • Chapter
  • First Online:
Non-traditional Micromachining Processes

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

There are a lot of developments in the micro manufacturing methods for the production of the three-dimensional miniaturized products made up of different advanced materials. Ultrasonic micro machining is an essential technique for the fabrication of micro parts on the hard, brittle and non-conductive materials like glass, ceramics and silicon with high aspect ratio. Ultrasonic micro machining is the mechanical type non conventional micro machining process. Material removal mechanism of USMM is similar to macro ultrasonic machining process. Adequate surface finish with stiff tolerances and dimensions can be achieved by ultrasonic micro machining (USMM) on hard and brittle materials. During the last decades, a number of researchers have explored experimentally and theoretically this ultrasonic micro machining (USMM) process technique with different materials. Recent development on ultrasonic micro machining (USMM) process has been highlighted and discussed in details with different types of ultrasonic micro machining (USMM) set up and material removal mechanism. Design and developments of micro-tools for USMM process have also been discussed. Influences of different process parameters on various responses of USMM have been discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.G. Amin, M.H.M. Ahmed, H.A. Youssef, “Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis”, Journal of Materials Processing Technology 55 (1995) 254–260.

    Google Scholar 

  2. ​Thoe, T., D. Aspinwall, Wise M. Review on ultrasonic machining. International Journal of Machine Tools and Manufacture, 1998. 38(4): p. 239–255.

    Google Scholar 

  3. Egashira ​K.; Masuzawa T.; Fujino M. and Sun X. Q. “Application of USM to micromachining by on-the-machine tool fabrication,” International Journal of Electrical Machining, no. 2, pp. 31–36, 1997.

    Google Scholar 

  4. Egashira K. and Masuzawa T. “Microultrasonic machining by the application of workpiece vibration,” CIRP Annals—Manufacturing Technology, vol. 48, no. 1, pp. 131–134, 1999.

    Google Scholar 

  5. Kremer ​D. Saleh S. M. Ghabrial S. R. and Moisan A. “The State of the Art of Ultrasonic Machining,” CIRP Annals—Manufacturing Technology, vol. 30, no. 1, pp. 107–110, 1981.

    Google Scholar 

  6. Barash M.M. and Watanapongse D. (1970), “On the effect of ambient pressure on the rate of material removal in ultrasonic machining”, International Journal of Mechanical Sciences, Vol. 12, pp. 775–779.

    Google Scholar 

  7. Li Z.C., Jiaoa Y., Deinesa T.W., Pei Z.J.(2005), “Rotary ultrasonic machining of ceramics matrix composites: feasibility study and designed experiments”, International Journal of Machine Tools and Manufacture, Vol. 45, No. 12–13, pp. 1402–1411.

    Google Scholar 

  8. Jianxin, D. and Taichiu, L (2000), “Surface integrity in electro-discharge machining, ultrasonic machining and diamond saw cutting of ceramic composites”, Ceramic International, Vol. 26, No. 8, pp. 825–830.

    Google Scholar 

  9. Balamuth L.A. (1966), “Ultrasonic assistance to conventional metal removal”, Ultrasonics, Vol. 4, pp. 125–130.

    Google Scholar 

  10. Babitsky V.I., Mitrofanov A.V., Silverschmidt V.V. (2004), “Ultrasonically assisted turning of aviation materials: simulations and experimental study”, Ultrasonics, Vol. 42, pp. 81–86.

    Google Scholar 

  11. X. Q. Sun, T. Masuzawa, and M. Fujino, “Micro ultrasonic machining and self-aligned multilayer machining/assembly technologies for 3D micromachines,” in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS ’96), pp. 312–317, 1996.

    Google Scholar 

  12. Ghahramani B. and Z. Y. Wang Z. Y., “Precision ultrasonic machining process: a case study of stress analysis of ceramic (Al2O3),” International Journal of Machine Tools and Manufacture, vol. 41, no. 8, pp. 1189–1208, 2001.

    Google Scholar 

  13. Masuzawa T. and Tönshoff H. K. “Three-dimensional micromachining by machine tools,” CIRP Annals —Manufacturing Technology, vol. 46, no. 2, pp. 621–628, 1997.

    Google Scholar 

  14. Sun, X.Q., Masuzawa, T, Fujino, M., Micro ultrasonic machining and self-aligned multilayer ma-chining/assembly technologies for 3D micromachines, Proc. IEEE, 1996, pp. 312–317.

    Google Scholar 

  15. Yu, Z.Y., Rajurkar, K.P., and Tandon, A. Study of 3D Micro-Ultrasonic Machining. Journal of Manufacturing Science and Engineering, 2004, 126(4), 727–732.

    Google Scholar 

  16. Sarwade, A., Sundaram, M. M., & Rajurkar, K. P. (2010). Investigation of micro hole drilling in bovine rib using micro rotary ultrasonic machining. In 16th International Symposium on Electromachining, ISEM 2010. (pp. 411–416). Shanghai Jiaotong University Press.

    Google Scholar 

  17. Sarwade, A., Sundaram, M. M., & Rajurkar, K. P. (2010). Micro rotary ultrasonic machining: Effect of machining parameters on material removal rate. In Transactions of the North American Manufacturing Research Institution of SME. (Vol. 38, pp. 113–120).

    Google Scholar 

  18. Shimada, S., et al., Brittle-Ductile Transition Phenomena in Microindentation and Micromachining. CIRP Annals—Manufacturing Technology, 1995. 44(1): p. 523–526.

    Google Scholar 

  19. Zarepour, H., Yeo. S.H. (2012) Predictive modeling of material removal modes in micro ultrasonic machining. International Journal of Machine Tools and Manufacture, vol. 62, pp. 13–23.

    Google Scholar 

  20. Yu, Z., X. Hu, K.P. Rajurkar. Influence of Debris Accumulation on Material Removal and Surface Roughness in Micro Ultrasonic Machining of Silicon. CIRP Annals—Manufacturing Technology, 2006. 55(1): p. 201–204.

    Google Scholar 

  21. Lia G.; Yu Z.; Song J.; Li C., Li J. and Wataru Natsu W., “Material Removal Modes of Quartz Crystals by Micro USM”, Procedia CIRP 42 (2016) 842–846.

    Google Scholar 

  22. H. Zarepour & S. H. Yeo & P. C. Tan, E. Aligiri, “A new approach for force measurement and workpiece clamping in micro-ultrasonic machining”, Int J Adv Manuf Technol (2011) 53:517–522.

    Google Scholar 

  23. K. P. Rajurkar, and W. M. Wang, “Nontraditional Machining,” CRC Handbook of Mechanical Engineering-Ch.13, 1997, pp. 29–34.

    Google Scholar 

  24. W. H. Fan, C. L. Chao, W. C. Chou, T. T. Chen, and C. W. Chao, “Study on the surface integrity of micro-ultrasonic machined glass-ceramic material,” Key Engineering Materials, Vol.407–408, pp. 731–734, 2009.

    Google Scholar 

  25. M. Komaraiah and P. Narasimha Reddy, “A study on the influence of workpiece properties in ultrasonic machining,” Int. J. of Machine Tools and Manufacture, Vol.33, No.3, pp. 495–505, 1993.

    Google Scholar 

  26. Soundararajan V. and Radhakrishnan, V., “An experimental investigation on the basic mechanisms involved in ultrasonic machining,” Int. J. of Machine Tool Design and Research, Vol.26, No.3, pp. 307–321, 1986.

    Google Scholar 

  27. Y. Ichida, R. Sato, Y. Morimoto, and K. Kobayashi, “Material removal mechanisms in non-contact ultrasonic abrasive machining,” Wear, Vol.258, No.1–4, pp. 107–114, 2005.

    Google Scholar 

  28. D. Kremer, S. M. Saleh, S. R. Ghabrial, and A. Moisan, “The state of the art of ultrasonic machining,” CIRP Annals—Manufacturing Technology, Vol.30, No.1, pp. 107–110, 1981.

    Google Scholar 

  29. A.G. Evans, Fracture mechanics determinations, in: Fracture Mechanics of Ceramics, vol. 1, Plenum, New York, 1974.

    Google Scholar 

  30. D. Charkaborty, J. Mukeryi, Indentation induced cracks in hot pressed Si3N4, Indian J. Technol. 20 (1982) 361–365.

    Google Scholar 

  31. A.G. Evans, D.B. Marshall, in: D.A. Rigney (Ed.), Fundamentals of Friction and Wear of Materials, ASME, 1981, pp. 439–440.

    Google Scholar 

  32. A.G. Evans, T.R. Wilshaw, Quasi-static solid particle damage in brittle solids—I. Observations, analysis and implications, Acta Metallurgica, vol. 24, Pergamon Press, 1976, pp. 939–956, printed in Great Britain.

    Google Scholar 

  33. M. Komaraiah, P.N. Reddy, A study on the influence of workpiece properties in ultrasonic machining, Int. J. Mach. Tools Manuf. 33 (3) (1993) 495–505.

    Google Scholar 

  34. Shaw M.C. (1956), “Ultrasonic grinding”, Annals of CIRP, Vol. 5, pp. 25–53.

    Google Scholar 

  35. Miller G.E. (1957), “Special theory of ultrasonic machining”, Journal of Applied Physics, Vol. 28, No. 2, pp. 149–156.

    Google Scholar 

  36. Rozenberg, L.D.; Kazantsev, V.F.; Makarov, L.O. and Yakhimovich D. F. (1964), “Ultrasonic Cutting”, Consultant Bureau, New York, pp. 97–102.

    Google Scholar 

  37. Cook N.H. (1966), “Manufacturing analysis”, Addison-Wesley, New York, pp. 133–148.

    Google Scholar 

  38. Kainth G.S.; Nandy A. and Singh K. (1979), “On the mechanisms of material removal in ultrasonic machining” International Journal of Machine Tool Design and Research, Vol. 19, pp. 33–41.

    Google Scholar 

  39. Nair E.V. and Ghosh A. (1985), “A fundamental approach to the study of mechanics of ultrasonic machining”, Int. Journal of Prod. Research, Vol. 23, pp. 731–753.

    Google Scholar 

  40. Rajurkar K.P.; Wang Z.Y. and Kuppattan A. (1999), “Micro removal of ceramic material (Al2O3) in the precision ultrasonic machining”, Precision Engineering, Vol. 23, No.2, pp 73–78.

    Google Scholar 

  41. Lee T.C. and Chan C.W. (1997), “Mechanism of the ultrasonic machining of ceramic composites”, Journal of Materials Processing Technology, Vol. 71, pp. 195–201.

    Google Scholar 

  42. Wiercigroch M., Neilson R.D., Player M.A. (1999), “Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach”, Physics Letters, Vol. 259, pp. 91–96.

    Google Scholar 

  43. Nath C.; Lim G. C.; and Zheng H.Y. (2012) “Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics”, Ultrasonics, Vol.52, pp. 605–613.

    Google Scholar 

  44. Ichida, Y.; Sato, R.; Y. Morimoto, Y. and Kobayashi, K. (2005) “Material removal mechanisms in non-contact ultrasonic abrasive machining”, Wear, Vol. 258, pp. 107–114.

    Google Scholar 

  45. Benedict G.F. (1987), Nontraditional Manufacturing Processes, new York, Marcel Decker Inc. pp. 67–83.

    Google Scholar 

  46. Kennedy, D.K. and Grieve, R.J. (1975), “Ultrasonic machining—A review”, The Production Engineering, Vol. 54, pp. 481.

    Google Scholar 

  47. Lee B.J., Kim K. E. (2009), “Characteristics of micro-hole machining of Al2O3 ceramics by ultrasonic longitudinal vibration”, Journal of ceramics processing research, Vol. 10, No. 4, pp. 482–490.

    Google Scholar 

  48. Yu Z. Y.; Rajurkar K.P.; and Tandon A. (2004), “Study of 3D micro-ultrasonic machining,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 126, no. 4, pp. 727–732.

    Google Scholar 

  49. Hocheng H.; Kuo K.L. and Lin J.T. (1999), Machineability of zirconia ceramics in ultrasonic drilling. Mater. Manuf. Process. vol. 14, no. 5, pp. 713–724.

    Google Scholar 

  50. Egashira, K.; Taniguchi, T.; Tsuchiya, H. and Miyazaki, M. “Micro ultrasonic machining using multi tools,” in Proceedings of the 7th International Conference on Progress Machining Technology (ICPMT ’04), pp. 297–301, December 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, S., Doloi, B., Bhattacharyya, B. (2017). Recent Advancement on Ultrasonic Micro Machining (USMM) Process. In: Kibria, G., Bhattacharyya, B., Davim, J. (eds) Non-traditional Micromachining Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-52009-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52009-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52008-7

  • Online ISBN: 978-3-319-52009-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics