Skip to main content

Patrolling Trees with Mobile Robots

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10128))

Included in the following conference series:

Abstract

Consider k identical robots traversing the edges of a geometric tree. The robots have to patrol the tree by perpetually moving along edges, but without exceeding their maximum unit speed. The robots can change direction and speed anywhere on vertices or interiors of edges. The quality of patrolling is measured by idleness, which is defined as the longest time period during which any point on the tree is not visited by any of the robots. Goal is to provide algorithms describing the movement of the robots along the tree so as to minimize the idleness.

Our main contribution is to show that there is an off-line schedule, where placing k robots at specific initial positions on a geometric tree T and making them move at unit speed, permits to achieve the optimal idle time. We extend this to a graph tree model (where the robots can change direction only on vertices). We also consider on-line schedules, working for collections of simple, identical, memoryless robots, walking with constant speed, which behave according to so-called rotor-router model. We conclude with a discussion of experimental work indicating that in a random setting the rotor router is efficient on tree graphs.

J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agmon, N., Hazon, N., Kaminka, G.A.: The giving tree: constructing trees for efficient offline and online multi-robot coverage. Ann. Math. Artif. Intell. 52(2–4), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings. In: ICRA, pp. 2339–2345 (2008)

    Google Scholar 

  3. Aldous, D.J.: The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math. 3(4), 450–465 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpern, S., Morton, A., Papadaki, K.: Optimizing randomized patrols. Operational Research Group, London School of Economics and Political Science (2009)

    Google Scholar 

  5. Alpern, S., Morton, A., Papadaki, K.: Patrolling games. Oper. Res. 59(5), 1246–1257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amigoni, F., Basilico, N., Gatti, N., Saporiti, A., Troiani, S.: Moving game theoretical patrolling strategies from theory to practice: an USARSim simulation. In: ICRA, pp. 426–431 (2010)

    Google Scholar 

  7. Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04355-0_44

    Chapter  Google Scholar 

  8. Broder, A.: Generating random spanning trees. In: 30th Annual Symposium on Foundations of Computer Science, pp. 442–447 (1989)

    Google Scholar 

  9. Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznanski, P.: Lock-in problem for parallel rotor-router walks. CoRR abs/1407.3200 (2014)

    Google Scholar 

  10. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–308 (2004)

    Google Scholar 

  11. Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Martin, R., Morales Ponce, O.: Optimal patrolling of fragmented boundaries. In: Proceedings of SPAA (2013)

    Google Scholar 

  12. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_59

    Chapter  Google Scholar 

  13. Czyzowicz, J., Georgiou, K., Kranakis, E., MacQuarrie, F., Pajak, D.: Fence patrolling with two-speed robots. In: Proceedings of ICORES 2016, 5th International Conference on Operations Research and Enterprise Systems, Rome, Italy, 23–25 February 2016 (2016)

    Google Scholar 

  14. Dereniowski, D., Kosowski, A., Pajak, D., Uznanski, P.: Bounds on the cover time of parallel rotor walks. In: STACS 2014, Lyon, France, 5–8 March 2014, pp. 263–275 (2014)

    Google Scholar 

  15. Dumitrescu, A., Ghosh, A., Tóth, C.D.: On fence patrolling by mobile agents. Electr. J. Comb. 21(3), P3.4 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: AAMAS, vol. 1, pp. 63–70 (2008)

    Google Scholar 

  18. Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 119–130. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15461-4_11

    Chapter  Google Scholar 

  19. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. In: ICRA, pp. 1927–1933 (2001)

    Google Scholar 

  20. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Rob. Auton. Syst. 56, 1102–1114 (2008)

    Article  Google Scholar 

  21. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35261-4_62

    Chapter  Google Scholar 

  22. Kosowski, A., Pająk, D.: Does adding more agents make a difference? A case study of cover time for the rotor-router. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 544–555. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_46

    Google Scholar 

  23. Kranakis, E., Krizanc, D.: Optimization problems in infrastructure security. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 3–13. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30303-1_1

    Chapter  Google Scholar 

  24. Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Simão Sichman, J., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer, Heidelberg (2003). doi:10.1007/3-540-36483-8_11

    Chapter  Google Scholar 

  25. Marino, A., Parker, L.E., Antonelli, G., Caccavale, F.: Behavioral control for multi-robot perimeter patrol: a finite state automata approach. In: ICRA, pp. 831–836 (2009)

    Google Scholar 

  26. Marino, A., Parker, L.E., Antonelli, G., Caccavale, F., Chiaverini, S.: A fault-tolerant modular control approach to multi-robot perimeter patrol. In: Robotics and Biomimetics (ROBIO), pp. 735–740 (2009)

    Google Scholar 

  27. Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: CDC, pp. 7153–7158 (2010)

    Google Scholar 

  28. Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IAICT, vol. 349, pp. 139–146. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19170-1_15

    Chapter  Google Scholar 

  29. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Many thanks to Leszek Gasieniec for useful conversations in the early stages of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Czyzowicz, J., Kosowski, A., Kranakis, E., Taleb, N. (2017). Patrolling Trees with Mobile Robots. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2016. Lecture Notes in Computer Science(), vol 10128. Springer, Cham. https://doi.org/10.1007/978-3-319-51966-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51966-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51965-4

  • Online ISBN: 978-3-319-51966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics