Skip to main content

Evaluation of Local Multiscale Approximation Spaces for Partition of Unity Methods

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VIII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 115))

Abstract

The simulation of the behavior of heterogeneous and composite materials poses a number of challenges to numerical methods e.g. due to the presence of discontinuous material coefficients. Moreover, the material properties of fibers and inclusions are significantly different from those of the surrounding matrix. Thus, the gradients of the solution feature a substantial discontinuity at the material interface between inclusions and matrix. Hence, materials with many fine scale inclusions need a very high resolution mesh in the context of traditional finite element (FE) analysis. However, many approaches within the context of numerical homogenization have been proposed to tackle and overcome this need for a large number of degrees of freedom. To this end, either discontinuous coefficients are replaced by smooth effective coefficients or, standard FE shape functions are replaced by more complex, numerically computed shape functions while the overall quality of the approximation is retained. In this paper we study two-dimensional examples of heat transfer and (linear) elasticity in composite materials using a number of different homogenization approaches with the overall goal of evaluating and comparing their performance when used for the construction of multiscale enrichment functions for a partition of unity method (PUM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we consider so-called flat-top PU functions only since they allow to control the stability of an enriched basis withe arbitrary enrichments [18].

  2. 2.

    In the literature the inner products usually not part of the definitions of the sup − inf and n-width but assumed to be fixed for \(\mathcal{H}_{l},\mathcal{W}_{l}\). We want to point out this dependence and later on characterize the approximation in energy norm, H 1- and L 2-norms and will, thus, employ different definitions for the inner product \(\left (\cdot,\cdot \right )_{\mathcal{H}_{l}}\) on \(\mathcal{H}_{l}\).

References

  1. M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells, The fenics project version 1.5. Arch. Numer. Softw. 3 (100), 9–23 (2015)

    Google Scholar 

  2. I. Babuška, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9 (1), 373–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuška, J.M. Melenk, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996). Special Issue on Meshless Methods

    Google Scholar 

  4. I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Babuška, G. Caloz, J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Babuška, U. Banerjee, J.E. Osborn, On principles for the selection of shape functions for the generalized finite element method. Comput. Methods Appl. Mech. Eng. 191 (49), 5595–5629 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Babuška, X. Huang, R. Lipton, Machine computation using the exponentially convergent multiscale spectral generalized finite element method. ESAIM: Math. Model. Numer. Anal. 48, 493–515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Buck, O. Iliev, H. Andrä, Multiscale finite element coarse spaces for the analysis of linear elastic composites. Technical Report 212, Fraunhofer ITWM (2012)

    Google Scholar 

  9. C.-C. Chu, I. Graham, T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79 (272), 1915–1955 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.G. Ciarlet, Mathematical Elasticity, Volume I: Three Dimensional Elasticity. Studies in Mathematics and its Applications, vol. 20 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  11. Y. Efendiev, J. Galvis, X.-H. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230 (4), 937–955 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.A. Evans, Y. Bazilevs, I. Babuška, T.J.R. Hughes, n-widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198 (21), 1726–1741 (2009)

    Google Scholar 

  13. C.O. Horgan, Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37 (4), 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Kolmogoroff, Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Ann. Math. 37 (1), 107–110 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Leoni, A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 105 (American Mathematical Society, Providence, RI, 2009)

    Google Scholar 

  16. H. Owhadi, L. Zhang, Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast. Multiscale Model. Simul. 9 (4), 1373–1398 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Pinkus, n-Widths in Approximation Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Folge/A series of Modern Surveys in Mathematics, vol. 7 (Springer, Berlin, 1985)

    Google Scholar 

  18. M.A. Schweitzer, Stable enrichment and local preconditioning in the particle–partition of unity method. Numer. Math. 118 (1), 137–170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.A. Schweitzer, Generalizations of the finite element method. Cent. Eur. J. Math, 10, 3–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. M.A. Schweitzer, Variational mass lumping in the partition of unity method. SIAM J. Sci. Comput. 35 (2), A1073–A1097 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.A. Schweitzer, A. Ziegenhagel, in Rapid Enriched Simulation Application Development with Puma, ed. by M. Griebel, M.A. Schweitzer. Scientific Computing and Algorithms in Industrial Simulations (Springer, Berlin, 2017)

    Google Scholar 

Download references

Acknowledgements

This work was in part sponsored by the Sonderforschungsbereich 1060 of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schweitzer, M.A., Wu, S. (2017). Evaluation of Local Multiscale Approximation Spaces for Partition of Unity Methods. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VIII . Lecture Notes in Computational Science and Engineering, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-51954-8_9

Download citation

Publish with us

Policies and ethics