Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2177))

Abstract

Smooth scalar-valued valuations may be thought of as curvature integrals that are robust enough to apply to objects with convex singularities. It turns out that certain kinds of nonconvex singularities are also included. The distinguishing feature is the existence of a normal cycle, which is an integral current that stands in for the manifold of unit normals in case they do not exist in the usual sense. We describe the elements of the normal cycle construction, and sketch how it may be used to establish the fundamental relations of integral geometry, with emphasis on the class of WDC sets recently introduced by Pokorný and Rataj.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Alberti, L. Ambrosio, A geometrical approach to monotone functions in \(\mathbb{R}^{n}\). Math. Z. 230, 259–316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Alesker, Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11, 244–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Alesker, A. Bernig, The product on smooth and generalized valuations. Am. J. Math. 134, 507–560 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.D. Alexandrov, Modern development of surface theory, in Proceedings of the International Congress of Mathematicians, 1958, ed. by J.A. Todd (Cambridge University Press, Cambridge, 1960)

    Google Scholar 

  5. L. Ambrosio, J. Bertrand, DC calculus. (to appear). arXiv:1505.04817

    Google Scholar 

  6. V. Bangert, Sets with positive reach. Arch. Math. (Basel) 38, 54–57 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bernig, Scalar curvature of definable Alexandrov spaces. Adv. Geom. 2, 29–55 (2002)

    MathSciNet  MATH  Google Scholar 

  8. B.D. Boe, J.H.G. Fu, Characteristic cycles in Hermitian symmetric spaces. Can. J. Math. 49 417–467 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. U. Brehm, W. Kühnel, Smooth approximation of polyhedral surfaces regarding curvatures. Geom. Dedicata 12, 435–461 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Bröcker, M. Kuppe, Integral geometry of tame sets. Geom. Dedicata 82, 285–323 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. F.H. Clarke, Optimization and Nonsmooth Analysis. 2nd edn. Classics in Applied Mathematics, vol. 5 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990)

    Google Scholar 

  12. A. Dold, Lectures on Algebraic Topology (Springer, Berlin, 1972)

    Book  MATH  Google Scholar 

  13. G. Ewald, D.G. Larman, C.A. Rogers, The directions of the line segments and of the r-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika 17, 1–20 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Federer, Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Federer, Geometric Measure Theory (Springer, New York, 1969)

    MATH  Google Scholar 

  16. J.H.G. Fu, Curvature measures and generalized Morse theory. J. Differ. Geom. 30, 619–642 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.H.G. Fu, Monge-Ampère functions I, II. Indiana Univ. Math. J. 38, 745–771/773–789 (1989)

    Google Scholar 

  18. J.H.G. Fu, Kinematic formulas in integral geometry. Indiana Univ. Math. J. 39, 1115–1154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.H.G. Fu, Convergence of curvatures in secant approximations. J. Differ. Geom. 37, 177–190 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.H.G. Fu, Curvature measures and Chern classes of singular varieties. J. Differ. Geom. 39, 251–280 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.H.G. Fu, Curvature measures of subanalytic sets. Am. J. Math. 116, 819–880 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. J.H.G. Fu, Stably embedded surfaces of bounded integral curvature. Adv. Math. 152, 28–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.H.G. Fu, Intrinsic diameter and curvature integrals of compact surfaces immersed in \(\mathbb{R}^{n}\). Indiana Univ. Math. J. 53, 269–296 (2004)

    Article  MathSciNet  Google Scholar 

  24. J.H.G. Fu, Intersection theory and the Alesker product. Indiana Univ. Math. J. 65, 1347–1371 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.H.G. Fu, C. McCrory, Stiefel-Whitney classes and the conormal cycle of a singular variety. Trans. Am. Math. Soc. 349, 809–835 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.H.G. Fu, D. Pokorný, J. Rataj, Kinematic formulas for sets defined by differences of convex functions. Adv. Math. (to appear). arXiv 1505.03388

    Google Scholar 

  27. J.H.G. Fu, R.C. Scott, Piecewise linear approximation of smooth functions of two variables. Adv. Math. 248, 229–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Hartman, On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Harvey, H.B. Lawson Jr., Calibrated geometries. Acta Math. 148, 47–157 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.E. Hutchinson, M. Meier, A remark on the nonuniqueness of tangent cones. Proc. Am. Math. Soc. 97, 184–185 (1986)

    MathSciNet  MATH  Google Scholar 

  31. R.L. Jerrard, Some remarks on Monge-Ampère functions, in Singularities in PDE and the Calculus of Variations, CRM Proceedings Lecture Notes, vol. 44 (American Mathematical Society, Providence, RI, 2008), pp. 89–112

    Book  Google Scholar 

  32. R.L. Jerrard, Some rigidity results related to Monge-Ampère functions. Can. J. Math. 62, 320–354 (2010)

    Article  MATH  Google Scholar 

  33. N. Kleinjohann, Nächste Punkte in der Riemannschen Geometrie. Math. Z. 176, 327–344 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Kurdyka, On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier (Grenoble) 48, 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.D. MacPherson, Chern classes for singular algebraic varieties. Ann. Math. 100, 423–432 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Pavlica, L. Zajíček, On the directions of segments and r-dimensional balls on a convex surface. J. Convex Anal. 14, 149–167 (2007)

    MathSciNet  MATH  Google Scholar 

  37. G. Perel’man, DC structure on Alexandrov space. Preprint (1994)

    Google Scholar 

  38. D. Pokorný, J. Rataj, Normal cycles and curvature measures of sets with d.c. boundary. Adv. Math. 248, 963–985 (2013)

    Google Scholar 

  39. A.C. Ponce, J. Van Schaftingen, The continuity of functions with N-th derivative measure. Houst. J. Math. 33, 927–939 (2007)

    MathSciNet  MATH  Google Scholar 

  40. M.-H. Schwartz, Classes de Chern des ensembles analytiques. [Chern classes of analytic sets] With a preface by Jean-Paul Brasselet, Le Dung Trang and Bernard Teissier. Actualités Mathématiques. [Current Mathematical Topics] Hermann, Paris (2000)

    Google Scholar 

  41. P. Topping, Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv. 83, 539–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Weyl, On the volume of tubes. Am. J. Math. 61, 461–472 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Zähle, Curvatures and currents for unions of sets with positive reach. Geom. Dedicata 23, 155–171 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Partially supported by NSF grant DMS-1406252. Many thanks to the anonymous referee for a number of helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. G. Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fu, J.H.G. (2017). Integral Geometric Regularity. In: Jensen, E., Kiderlen, M. (eds) Tensor Valuations and Their Applications in Stochastic Geometry and Imaging. Lecture Notes in Mathematics, vol 2177. Springer, Cham. https://doi.org/10.1007/978-3-319-51951-7_10

Download citation

Publish with us

Policies and ethics