Skip to main content

Laser-Assisted Endodontics

  • Chapter
  • First Online:
Lasers in Dentistry—Current Concepts

Abstract

Endodontics is a technically demanding aspect of dentistry because of the limited ability to see and instrument the root canals of teeth. Conventional endodontic treatment is painstakingly slow, and traditional hand and powered endodontic instruments do not contact all the walls of the root canal. The use of lasers can assist in providing enhanced detection of bacteria and microbial biofilms in the root canal, to guide debridement approaches and help define endpoints for instrumentation. Fluorescence feedback can indicate where microbial deposits remain and where further treatment is needed. There are a range of ways that lasers can enhance biomechanical preparation of the root canal system, particularly through fluid agitation and inducing cavitation in water-based fluids, to remove debris and smear layers. Such actions can be optimized using modified fibers to deliver the laser energy in various side-firing patterns. Lasers can achieve disinfection of the root canal through both photothermal and photodynamic processes, reaching with laser energy areas that are difficult to access using instruments, to inactivate microbial pathogens. Additional applications of lasers in endodontics include the assessment of pulp vitality through laser Doppler flowmetry, photothermal and photodynamic bleaching of discolored sclerosed vital or stained nonvital teeth, pulp capping and pulpotomy, photobiomodulation and laser-induced analgesia, and endodontic surgical applications including periapical surgery and treatment of invasive cervical resorption. In each of these areas, the use of lasers can simplify treatment protocols and optimize clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd-Elmeguid A, Yu DC. Dental pulp neurophysiology: part 2. Current diagnostic tests to assess pulp vitality. J Can Dent Assoc. 2009;75(2):139–43.

    PubMed  Google Scholar 

  2. Emshoff R, Moschen I, Strobl H. Use of laser Doppler flowmetry to predict vitality of luxated or avulsed permanent teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(6):750–5.

    Article  PubMed  Google Scholar 

  3. Roy E, et al. Evaluation of the ability of laser Doppler flowmetry for the assessment of pulp vitality in general dental practice. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(4):615–20.

    Article  PubMed  Google Scholar 

  4. Firestone AR, Wheatley AM, Thuer UW. Measurement of blood perfusion in the dental pulp with laser Doppler flowmetry. Int J Microcirc Clin Exp. 1997;17(6):298–304.

    Article  PubMed  Google Scholar 

  5. Jafarzadeh H. Laser Doppler flowmetry in endodontics: a review. Int Endod J. 2009;42(6):476–90.

    Article  PubMed  Google Scholar 

  6. Odor TM, et al. Laser light transmission in teeth: a study of the patterns in different species. Int Endod J. 1999;32(4):296–302.

    Article  PubMed  Google Scholar 

  7. Alghaithy RA, Qualtrough AJ. Pulp sensibility and vitality tests for diagnosing pulpal health in permanent teeth: a critical review. Int Endod J. 2017;50(2):135–42. doi: 10.1111/iej.12611. Epub 2016 Feb 11.

  8. Banthitkhunanon P, et al. Effects of enamel and dentine thickness on laser Doppler blood-flow signals recorded from the underlying pulp cavity in human teeth in vitro. Arch Oral Biol. 2013;58(11):1692–5.

    Article  PubMed  Google Scholar 

  9. Sasano T, et al. Possible application of transmitted laser light for the assessment of human pulpal vitality. Endod Dent Traumatol. 1997;13(2):88–91.

    Article  PubMed  Google Scholar 

  10. Chandler NP, Pitt Ford TR, Watson TF. Pattern of transmission of laser light through carious molar teeth. Int Endod J. 2001;34(7):526–32.

    Article  PubMed  Google Scholar 

  11. Chandler NP, Pitt Ford TR, Monteith BD. Laser light passage through restored and carious posterior teeth. J Oral Rehabil. 2014;41(8):630–4.

    Article  PubMed  Google Scholar 

  12. Walsh LJ. Applications of laser fluorescence for diagnosis of bacterial infections in the root canal. Australas Dent Pract. 2010;21:54–6.

    Google Scholar 

  13. Sainsbury AL, Bird PS, Walsh LJ. DIAGNOdent laser fluorescence assessment of endodontic infection. J Endod. 2009;35(10):1404–7.

    Article  PubMed  Google Scholar 

  14. Stabholz A, et al. The use of lasers in dentistry: principles of operation and clinical applications. Compend Contin Educ Dent. 2003;24(12):935–48.

    PubMed  Google Scholar 

  15. Lagemann M, et al. Activation of ethylenediaminetetraacetic acid by a 940 nm diode laser for enhanced removal of smear layer. Aust Endod J. 2014;40(2):72–5.

    Article  PubMed  Google Scholar 

  16. Ho QV, et al. Laser fluorescence assessment of the root canal using plain and conical optical fibers. J Endod. 2010;36(1):119–22.

    Article  PubMed  Google Scholar 

  17. George R, Walsh LJ. Performance assessment of novel side firing flexible optical fibers for dental applications. Lasers Surg Med. 2009;41(3):214–21.

    Article  PubMed  Google Scholar 

  18. Shakibaie F, George R, Walsh LJ. Applications of laser-induced fluorescence in dentistry. Int J Dent Clin. 2011;3(3):38–44.

    Google Scholar 

  19. George R, Walsh LJ. Laser fiber-optic modifications and their role in endodontics. J Laser Dent. 2012;20:24–30.

    Google Scholar 

  20. Krause F, et al. Laser fluorescence measurements compared to electrical resistance of residual dentine in excavated cavities in vivo. Caries Res. 2007;41(2):135–40.

    Article  PubMed  Google Scholar 

  21. Clark J, et al. Effectiveness of diagnosing residual caries with various methods during cavity preparation using conventional methods, chemo-mechanical caries removal, and Er:YAG laser. Aust Dent J. 2001;46:S20.

    Google Scholar 

  22. Yonemoto K, et al. Application of DIAGNOdent as a guide for removing carious dentin with Er:YAG laser. J Dent. 2006;34:269–76.

    Article  PubMed  Google Scholar 

  23. Eberhard J, et al. Evaluation of selective caries removal by a fluorescence feedback-controlled Er:YAG laser in vitro. Caries Res. 2005;39(6):496–504.

    Article  PubMed  Google Scholar 

  24. Folwaczny M, et al. Root substance removal with Er:YAG laser radiation at different parameters using a new delivery system. J Periodontol. 2000;71(2):147–55.

    Article  PubMed  Google Scholar 

  25. Krause F, et al. Evaluation of selective calculus removal by a fluorescence feedback-controlled Er:YAG laser in vitro. J Clin Periodontol. 2007;34(1):66–71.

    Article  PubMed  Google Scholar 

  26. Walsh LJ, Mubarak S, Mcquillan A. Autopilot laser-based systems for guiding caries and calculus removal: from concept to clinical reality. Australas Dent Pract. 2007;18:122–8.

    Google Scholar 

  27. Coulthwaite L, et al. The microbiological origin of fluorescence observed in plaque on dentures during QLF analysis. Caries Res. 2006;40(2):112–6.

    Article  PubMed  Google Scholar 

  28. Walsh LJ, Shakibaie F. Ultraviolet-induced fluorescence: shedding new light on dental biofilms and dental caries. Australas Dent Pract. 2007;18:52–6.

    Google Scholar 

  29. Levy G. Cleaning and shaping the root canal with a Nd:YAG laser beam: a comparative study. J Endod. 1992;18(3):123–7.

    Article  PubMed  Google Scholar 

  30. Matsuoka E, et al. Morphological study on the capability of Er:YAG laser irradiation for root canal preparation. J Clin Laser Med Surg. 2000;18(4):215–9.

    Article  PubMed  Google Scholar 

  31. Ali MN, et al. Efficacy of root canal preparation by Er,Cr:YSGG laser irradiation with crown-down technique in vitro. Photomed Laser Surg. 2005;23(2):196–201.

    Article  PubMed  Google Scholar 

  32. Jahan K, et al. An assessment following root canal preparation by Er,Cr:YSGG laser irradiation in straight and curved roots, in vitro. Lasers Med Sci. 2006;21(4):229–34.

    Article  PubMed  Google Scholar 

  33. Cohen BI, Deutsch AS, Musikant BL. Effect of power settings on temperature change at the root surface when using a Holmium YAG laser in enlarging the root canal. J Endod. 1996;22(11):596–9.

    Article  PubMed  Google Scholar 

  34. Cohen BI, et al. Effect of power settings versus temperature change at the root surface when using multiple fiber sizes with a Holmium YAG laser while enlarging a root canal. J Endod. 1998;24(12):802–6.

    Article  PubMed  Google Scholar 

  35. Deutsch AS, Cohen BI, Musikant BL. Temperature change at the root surface when enlarging a root canal with a holmium: YAG (Ho:YAG) laser, using six different fiber-optic sizes. Gen Dent. 2004;52(3):222–7.

    PubMed  Google Scholar 

  36. Matsuoka E, Jayawardena JA, Matsumoto K. Morphological study of the Er,Cr:YSGG laser for root canal preparation in mandibular incisors with curved root canals. Photomed Laser Surg. 2005;23(5):480–4.

    Article  PubMed  Google Scholar 

  37. Anic I, et al. Scanning electron microscopic study of dentin lased with argon, CO2, and Nd:YAG laser. J Endod. 1998;24(2):77–81.

    Article  PubMed  Google Scholar 

  38. Shoji S, Hariu H, Horiuchi H. Canal enlargement by Er:YAG laser using a cone-shaped irradiation tip. J Endod. 2000;26(8):454–8.

    Article  PubMed  Google Scholar 

  39. Martin. Comparison of the emission characteristics of three erbium laser systems-a physical case report. J Oral Laser Appl. 2004;4(4):263–9.

    Google Scholar 

  40. Verdaasdonkz RM, van Swol CF. Laser light delivery systems for medical applications. Phys Med Biol. 1997;42:869–94.

    Article  Google Scholar 

  41. Alves PR, et al. Evaluation of hollow fiberoptic tips for the conduction of Er:YAG laser. Photomed Laser Surg. 2005;23(4):410–5.

    Article  PubMed  Google Scholar 

  42. Shirk GJ, Gimpelson RJ, Krewer K. Comparison of tissue effects with sculptured fiberoptic cables and other Nd:YAG laser and argon laser treatments. Lasers Surg Med. 1991;11(6):563–8.

    Article  PubMed  Google Scholar 

  43. Stabholz A, et al. Effect of ArF-193 nm excimer laser on human dentinal tubules. A scanning electron microscopic study. Oral Surg Oral Med Oral Pathol. 1993;75(1):90–4.

    Article  PubMed  Google Scholar 

  44. Harashima T, et al. Effect of argon laser irradiation on instrumented root canal walls. Endod Dent Traumatol. 1998;14(1):26–30.

    Article  PubMed  Google Scholar 

  45. Tewfik HM, et al. Structural and functional changes in root dentin following exposure to KTP/532 laser. J Endod. 1993;19(10):492–7.

    Article  PubMed  Google Scholar 

  46. Harashima T, et al. Effect of Nd:YAG laser irradiation for removal of intracanal debris and smear layer in extracted human teeth. J Clin Laser Med Surg. 1997;15(3):131–5.

    PubMed  Google Scholar 

  47. Takeda FH, et al. Comparative study about the removal of smear layer by three types of laser devices. J Clin Laser Med Surg. 1998;16(2):117–22.

    PubMed  Google Scholar 

  48. Nuebler-Moritz M, Gutknecht N, Sailer HF, Hering P, Prettl W et al. Laboratory investigation of the efficacy of holmium: YAG laser irradiation in removing intracanal debris, in Lasers in Dentistry III. In: Wingdor Harvey A, Featherstone jdb, Rechman P editors. Proc SPIE; 1997;2973:150–6.

    Google Scholar 

  49. Kesler G, et al. Histological and scanning electron microscope examination of root canal after preparation with Er:YAG laser microprobe: a preliminary in vitro study. J Clin Laser Med Surg. 2002;20(5):269–77.

    Article  PubMed  Google Scholar 

  50. Takeda FH, et al. Efficacy of Er:YAG laser irradiation in removing debris and smear layer on root canal walls. J Endod. 1998;24(8):548–51.

    Article  PubMed  Google Scholar 

  51. Yamazaki R, et al. Effects of erbium,chromium:YSGG laser irradiation on root canal walls: a scanning electron microscopic and thermographic study. J Endod. 2001;27(1):9–12.

    Article  PubMed  Google Scholar 

  52. Takeda FH, et al. A comparative study of the removal of smear layer by three endodontic irrigants and two types of laser. Int Endod J. 1999;32(1):32–9.

    Article  PubMed  Google Scholar 

  53. Wang X, et al. Effects of diode laser irradiation on smear layer removal from root canal walls and apical leakage after obturation. Photomed Laser Surg. 2005;23(6):575–81.

    Article  PubMed  Google Scholar 

  54. da Costa Ribeiro A, et al. Effects of diode laser (810 nm) irradiation on root canal walls: thermographic and morphological studies. J Endod. 2007;33(3):252–5.

    Article  PubMed  Google Scholar 

  55. Kaitsas V, et al. Effects of Nd: YAG laser irradiation on the root canal wall dentin of human teeth: a SEM study. Bull Group Int Rech Sci Stomatol Odontol. 2001;43(3):87–92.

    PubMed  Google Scholar 

  56. Goya C, et al. Effects of pulsed Nd:YAG laser irradiation on smear layer at the apical stop and apical leakage after obturation. Int Endod J. 2000;33(3):266–71.

    Article  PubMed  Google Scholar 

  57. Wilder-Smith P, et al. Effect of ND:YAG laser irradiation and root planing on the root surface: structural and thermal effects. J Periodontol. 1995;66(12):1032–9.

    Article  PubMed  Google Scholar 

  58. Takeda FH, et al. Effect of Er:YAG laser treatment on the root canal walls of human teeth: an SEM study. Endod Dent Traumatol. 1998;14(6):270–3.

    Article  PubMed  Google Scholar 

  59. Biedma BM, et al. Comparative study of root canals instrumented manually and mechanically, with and without Er:YAG laser. Photomed Laser Surg. 2005;23(5):465–9.

    Article  PubMed  Google Scholar 

  60. Altundasar E, et al. Ultramorphological and histochemical changes after Er,Cr:YSGG laser irradiation and two different irrigation regimes. J Endod. 2006;32(5):465–8.

    Article  PubMed  Google Scholar 

  61. Kimura Y, Wilder-Smith P, Matsumoto K. Lasers in endodontics: a review. Int Endod J. 2000;33(3):173–85.

    Article  PubMed  Google Scholar 

  62. Asnaashari M, Safavi N. Disinfection of contaminated canals by different laser wavelengths, while performing root canal therapy. J Lasers Med Sci. 2013;4(1):8–16.

    PubMed  PubMed Central  Google Scholar 

  63. Whitters CJ, et al. The bactericidal activity of pulsed Nd-YAG laser radiation in vitro. Lasers Med Sci. 1994;9:297–303.

    Article  Google Scholar 

  64. Moshonov J, et al. Nd:YAG laser irradiation in root canal disinfection. Endod Dent Traumatol. 1995;11(5):220–4.

    Article  PubMed  Google Scholar 

  65. Walsh LJ. The current status of low level laser therapy in dentistry. Part 2. Hard tissue applications. Aust Dent J. 1997;42(5):302–6.

    Article  PubMed  Google Scholar 

  66. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19:515–30.

    Article  PubMed  Google Scholar 

  67. Nammour S, et al. External temperature during KTP-Nd:YAG laser irradiation in root canals: an in vitro study. Lasers Med Sci. 2004;19(1):27–32.

    Article  PubMed  Google Scholar 

  68. George R, Walsh LJ. Performance assessment of novel side firing safe tips for endodontic applications. J Biomed Opt. 2011;16(4):048004.

    Article  PubMed  Google Scholar 

  69. Bergmans L, et al. Bactericidal effect of Nd:YAG laser irradiation on some endodontic pathogens ex vivo. Int Endod J. 2006;39(7):547–57.

    Article  PubMed  Google Scholar 

  70. Mathew J, et al. Viability and antibacterial efficacy of four root canal disinfection techniques evaluated using confocal laser scanning microscopy. J Conserv Dent. 2014;17(5):444–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res. 2007;86(8):694–707.

    Article  PubMed  Google Scholar 

  72. Komerik N, MacRobert AJ. Photodynamic therapy as an alternative antimicrobial modality for oral infections. J Environ Pathol Toxicol Oncol. 2006;25(1–2):487–504.

    PubMed  Google Scholar 

  73. Gursoy H, et al. Photodynamic therapy in dentistry: a literature review. Clin Oral Investig. 2013;17(4):1113–25.

    Article  PubMed  Google Scholar 

  74. Okamoto H, Iwase T, Morioka T. Dye-mediated bactericidal effect of He-Ne laser irradiation on oral microorganisms. Lasers Surg Med. 1992;12(4):450–8.

    Article  PubMed  Google Scholar 

  75. Dobson J, Wilson M. Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch Oral Biol. 1992;37(11):883–7.

    Article  PubMed  Google Scholar 

  76. Chiniforush N, et al. Clinical approach of high technology techniques for control and elimination of endodontic microbiota. J Lasers Med Sci. 2015;6(4):139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tennert C, et al. Effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections. BMC Oral Health. 2014;14:132.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rios A, et al. Evaluation of photodynamic therapy using a light-emitting diode lamp against Enterococcus faecalis in extracted human teeth. J Endod. 2011;37(6):856–9.

    Article  PubMed  Google Scholar 

  79. Siddiqui SH, Awan KH, Javed F. Bactericidal efficacy of photodynamic therapy against Enterococcus faecalis in infected root canals: a systematic literature review. Photodiagnosis Photodyn Ther. 2013;10(4):632–43.

    Article  PubMed  Google Scholar 

  80. Lee MT, Bird PS, Walsh LJ. Photo-activated disinfection of the root canal: a new role for lasers in endodontics. Aust Endod J. 2004;30(3):93–8.

    Article  PubMed  Google Scholar 

  81. Bonsor SJ, Pearson GJ. Current clinical applications of photo-activated disinfection in restorative dentistry. Dent Update. 2006;33(3):143–4. , 147–50, 153

    Article  PubMed  Google Scholar 

  82. Bago I, et al. Antimicrobial efficacy of a high-power diode laser, photo-activated disinfection, conventional and sonic activated irrigation during root canal treatment. Int Endod J. 2013;46(4):339–47.

    Article  PubMed  Google Scholar 

  83. Dickers B, et al. Temperature rise during photo-activated disinfection of root canals. Lasers Med Sci. 2009;24(1):81–5.

    Article  PubMed  Google Scholar 

  84. Kuzekanani M, Walsh LJ, Yousefi MA. Cleaning and shaping curved root canals: Mtwo vs ProTaper instruments, a lab comparison. Indian J Dent Res. 2009;20(3):268–70.

    Article  PubMed  Google Scholar 

  85. Haapasalo M, et al. Irrigation in endodontics. Br Dent J. 2014;216(6):299–303.

    Article  PubMed  Google Scholar 

  86. Caron G, et al. Effectiveness of different final irrigant activation protocols on smear layer removal in curved canals. J Endod. 2010;36(8):1361–6.

    Article  PubMed  Google Scholar 

  87. George R, Rutley EB, Walsh LJ. Evaluation of smear layer: a comparison of automated image analysis versus expert observers. J Endod. 2008;34(8):999–1002.

    Article  PubMed  Google Scholar 

  88. Peters OA, et al. Disinfection of root canals with photon-initiated photoacoustic streaming. J Endod. 2011;37(7):1008–12.

    Article  PubMed  Google Scholar 

  89. Pedulla E, et al. Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study. Int Endod J. 2012;45(9):865–70.

    Article  PubMed  Google Scholar 

  90. Zhu X, et al. Comparison of the antibacterial effect and smear layer removal using photon-initiated photoacoustic streaming aided irrigation versus a conventional irrigation in single-rooted canals: an in vitro study. Photomed Laser Surg. 2013;31(8):371–7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Al Shahrani M, et al. Enhanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: an in vitro study. Photomed Laser Surg. 2014;32(5):260–6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Balic M, et al. The efficacy of photon-initiated photoacoustic streaming and sonic-activated irrigation combined with QMiX solution or sodium hypochlorite against intracanal E. faecalis biofilm. Lasers Med Sci. 2016;31(2):335–42.

    Article  PubMed  Google Scholar 

  93. George R, Walsh LJ. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers. Photomed Laser Surg. 2010;28(2):161–5.

    Article  PubMed  Google Scholar 

  94. Gulabivala K, et al. The fluid mechanics of root canal irrigation. Physiol Meas. 2010;31(12):R49–84.

    Article  PubMed  Google Scholar 

  95. Boutsioukis C, et al. Formation and removal of apical vapor lock during syringe irrigation: a combined experimental and computational fluid dynamics approach. Int Endod J. 2014;47(2):191–201.

    Article  PubMed  Google Scholar 

  96. Boutsioukis C, et al. The effect of needle-insertion depth on the irrigant flow in the root canal: evaluation using an unsteady computational fluid dynamics model. J Endod. 2010;36(10):1664–8.

    Article  PubMed  Google Scholar 

  97. Boutsioukis C, Lambrianidis T, Kastrinakis E. Irrigant flow within a prepared root canal using various flow rates: a computational fluid dynamics study. Int Endod J. 2009;42(2):144–55.

    Article  PubMed  Google Scholar 

  98. de Groot SD, et al. Laser-activated irrigation within root canals: cleaning efficacy and flow visualization. Int Endod J. 2009;42(12):1077–83.

    Article  PubMed  Google Scholar 

  99. Matsumoto H, Yoshimine Y, Akamine A. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model. J Endod. 2011;37(6):839–43.

    Article  PubMed  Google Scholar 

  100. Verhaagen B, Fernandez Rivas D. Measuring cavitation and its cleaning effect. Ultrason Sonochem. 2016;29:619–28.

    Article  PubMed  Google Scholar 

  101. Blanken J, et al. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study. Lasers Surg Med. 2009;41(7):514–9.

    Article  PubMed  Google Scholar 

  102. De Moor RJ, et al. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Surg Med. 2009;41(7):520–3.

    Article  PubMed  Google Scholar 

  103. George R, Chan K, Walsh LJ. Laser-induced agitation and cavitation from proprietary honeycomb tips for endodontic applications. Lasers Med Sci. 2015;30(4):1203–8.

    Article  PubMed  Google Scholar 

  104. Wanner S, et al. Low-energy shock waves enhance the susceptibility of staphylococcal biofilms to antimicrobial agents in vitro. J Bone Joint Surg Br. 2011;93(6):824–7.

    Article  PubMed  Google Scholar 

  105. Gnanadhas DP, et al. Successful treatment of biofilm infections using shock waves combined with antibiotic therapy. Sci Rep. 2015;5:17440.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Boutsioukis C, et al. Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model. J Endod. 2010;36(5):875–9.

    Article  PubMed  Google Scholar 

  107. George R, Walsh LJ. Apical extrusion of root canal irrigants when using Er:YAG and Er,Cr:YSGG lasers with optical fibers: an in vitro dye study. J Endod. 2008;34(6):706–8.

    Article  PubMed  Google Scholar 

  108. George R, Chan K, Walsh LJ. Modifying laser induced shock waves for use in clinical endodontics. In: The 9th World Association of Laser Therapy Congress. Bologna: Medimond International Proceedings; 2013.

    Google Scholar 

  109. Hmud R, et al. Cavitational effects in aqueous endodontic irrigants generated by near-infrared lasers. J Endod. 2010;36(2):275–8.

    Article  PubMed  Google Scholar 

  110. Hmud R, Kahler WA, Walsh LJ. Temperature changes accompanying near infrared diode laser endodontic treatment of wet canals. J Endod. 2010;36(5):908–11.

    Article  PubMed  Google Scholar 

  111. Deleu E, Meire MA, De Moor RJ. Efficacy of laser-based irrigant activation methods in removing debris from simulated root canal irregularities. Lasers Med Sci. 2015;30(2):831–5.

    Article  PubMed  Google Scholar 

  112. Moffitt JM, et al. Prediction of tetracycline-induced tooth discoloration. J Am Dent Assoc. 1974;88(3):547–52.

    Article  PubMed  Google Scholar 

  113. Kim ST, Abbott PV, McGinley P. The effects of Ledermix paste on discolouration of mature teeth. Int Endod J. 2000;33(3):227–32.

    Article  PubMed  Google Scholar 

  114. Walsh LJ, Athanassiadis B. Endodontic aesthetic iatrodontics. Australas Dent Pract. 2007;18:62–4.

    Google Scholar 

  115. Thomson AD, et al. Tooth discolouration: staining effects of various sealers and medicaments. Aust Endod J. 2012;38(1):2–9.

    Article  PubMed  Google Scholar 

  116. Walsh LJ, Verheyen P. Bleaching – accelerated with the laser. In: Moritz A, et al., editors. Oral laser application. Berlin: Quintessence; 2006.

    Google Scholar 

  117. Chou K, George R, Walsh LJ. Effectiveness of different intracanal irrigation techniques in removing intracanal paste medicaments. Aust Endod J. 2014;40(1):21–5.

    Article  PubMed  Google Scholar 

  118. Kustarci A, et al. Efficacy of laser-activated irrigants in calcium hydroxide removal from the artificial grooves in root canals: an ex vivo study. Photomed Laser Surg. 2016;34(5):205–10.

    Article  PubMed  Google Scholar 

  119. Chen BK, George R, Walsh LJ. Root discolouration following short-term application of steroid medicaments containing clindamycin, doxycycline or demeclocycline. Aust Endod J. 2012;38(3):124–8.

    Article  PubMed  Google Scholar 

  120. Chen BK, George R, Walsh LJ. Discoloration of roots caused by residual endodontic intracanal medicaments. ScientificWorldJournal. 2014;2014:404676.

    PubMed  PubMed Central  Google Scholar 

  121. Bennett ZY, Walsh LJ. Factors affecting the rate of oxidation and resultant discolouration of tetracyclines contained in endodontic medicaments and irrigants. Int Endod J. 2015;48(4):373–9.

    Article  PubMed  Google Scholar 

  122. De Moor RJ, et al. Insight in the chemistry of laser-activated dental bleaching. ScientificWorldJournal. 2015;2015:650492.

    PubMed  PubMed Central  Google Scholar 

  123. Walsh LJ, Liu JY, Verheyen P. Tooth discolouration and its treatment using KTP laser-assisted tooth whitening. J Oral Laser Appl. 2004;4:7–20.

    Google Scholar 

  124. Kuzekanani M, Walsh LJ. Quantitative analysis of KTP laser photodynamic bleaching of tetracycline-discolored teeth. Photomed Laser Surg. 2009;27(3):521–5.

    Article  PubMed  Google Scholar 

  125. Bennett ZY, Walsh LJ. Efficacy of LED versus KTP laser activation of photodynamic bleaching of tetracycline-stained dentine. Lasers Med Sci. 2015;30(7):1823–8.

    Article  PubMed  Google Scholar 

  126. Bennett ZY, Walsh LJ. Effect of photo-fenton bleaching on tetracycline-stained dentin in vitro. J Contemp Dent Pract. 2015;16(2):126–9.

    Article  PubMed  Google Scholar 

  127. Whitters CJ, et al. A clinical study of pulsed Nd: YAG laser-induced pulpal analgesia. J Dent. 1995;23(3):145–50.

    Article  PubMed  Google Scholar 

  128. Orchardson R, Peacock JM, Whitters CJ. Effects of pulsed Nd:YAG laser radiation on action potential conduction in nerve fibres inside teeth in vitro. J Dent. 1998;26(5–6):421–6.

    Article  PubMed  Google Scholar 

  129. Orchardson R, Whitters CJ. Effect of HeNe and pulsed Nd:YAG laser irradiation on intradental nerve responses to mechanical stimulation of dentine. Lasers Surg Med. 2000;26(3):241–9.

    Article  PubMed  Google Scholar 

  130. Zeredo JL, et al. Effects of low power Er:YAG laser on the tooth pulp-evoked jaw-opening reflex. Lasers Surg Med. 2003;33(3):169–72.

    Article  PubMed  Google Scholar 

  131. Zeredo JL, et al. Antinociceptive effect of Er:YAG laser irradiation in the orofacial formalin test. Brain Res. 2005;1032(1–2):149–53.

    Article  PubMed  Google Scholar 

  132. LJ W. Membrane-based photoacoustic and biostimulatory applications in clinical practice. Australas Dent Pract. 2006;17:62–4.

    Google Scholar 

  133. Peres F, Felino A, Carvalho JF. Analgesic effect of 904-nm laser radiation (IR) in oral surgery. Rev Port Estomatol Cir Maxilofac. 1985;26(3):205–17.

    PubMed  Google Scholar 

  134. Mezawa S, et al. The possible analgesic effect of soft-laser irradiation on heat nociceptors in the cat tongue. Arch Oral Biol. 1988;33(9):693–4.

    Article  PubMed  Google Scholar 

  135. Tsuchiya K, et al. Diode laser irradiation selectively diminishes slow component of axonal volleys to dorsal roots from the saphenous nerve in the rat. Neurosci Lett. 1993;161(1):65–8.

    Article  PubMed  Google Scholar 

  136. Baxter GD, et al. Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp Physiol. 1994;79:227–34.

    Article  PubMed  Google Scholar 

  137. Kurumada F. A study on the application of Ga-As semiconductor laser to endodontics. The effects of laser irradiation on the activation of inflammatory cells and the vital pulpotomy. Ohu Daigaku Shigakushi. 1990;17:233–44.

    PubMed  Google Scholar 

  138. Walsh LJ. The current status of low level laser therapy in dentistry. Part 1. Soft tissue applications. Aust Dent J. 1997;42(4):247–54.

    Article  PubMed  Google Scholar 

  139. Yadav P, et al. Comparative evaluation of Ferric Sulfate, Electrosurgical and Diode Laser on human primary molars pulpotomy: an “in-vivo” study. Laser Ther. 2014;23(1):41–7.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Marques NC, et al. Low-level laser therapy as an alternative for pulpotomy in human primary teeth. Lasers Med Sci. 2015;30(7):1815–22.

    Article  PubMed  Google Scholar 

  141. Gupta G, et al. Laser pulpotomy-an effective alternative to conventional techniques: a 12 months clinicoradiographic study. Int J Clin Pediatr Dent. 2015;8(1):18–21.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Uloopi KS, et al. Clinical evaluation of low level diode laser application for primary teeth pulpotomy. J Clin Diagn Res. 2016;10(1):ZC67–70.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nammour S, et al. Comparative study on dogs between CO2 laser and conventional technique in direct pulp capping. Rev Belge Med Dent (1984). 2009;64(2):81–6.

    Google Scholar 

  144. Walsh LJ. Clinical evaluation of dental hard tissue applications of carbon dioxide lasers. J Clin Laser Med Surg. 1994;12(1):11–5.

    PubMed  Google Scholar 

  145. Yazdanfar I, Gutknecht N, Franzen R. Effects of diode laser on direct pulp capping treatment: a pilot study. Lasers Med Sci. 2015;30(4):1237–43.

    Google Scholar 

  146. Komabayashi T, Ebihara A, Aoki A. The use of lasers for direct pulp capping. J Oral Sci. 2015;57(4):277–86.

    Article  PubMed  Google Scholar 

  147. Cengiz E, Yilmaz HG. Efficacy of Erbium, Chromium-doped:Yttrium, Scandium, Gallium, and Garnet Laser Irradiation Combined with Resin-based Tricalcium Silicate and Calcium Hydroxide on Direct Pulp Capping: A Randomized Clinical Trial. J Endod. 2016;42(3):351–5.

    Article  PubMed  Google Scholar 

  148. Walsh LJ, Ryan PC. Management of external root resorption by carbon dioxide laser ablation and sealing. Aust Endod Newsl. 1992;18:15–7.

    Google Scholar 

  149. Buchelt M, et al. Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing. Lasers Surg Med. 1994;15(4):373–81.

    Article  PubMed  Google Scholar 

  150. Paghdiwala AF. Root resection of endodontically treated teeth by erbium: YAG laser radiation. J Endod. 1993;19(2):91–4.

    Article  PubMed  Google Scholar 

  151. Angiero F, et al. Apicoectomies with the erbium laser: a complementary technique for retrograde endodontic treatment. Photomed Laser Surg. 2011;29(12):845–9.

    Article  PubMed  Google Scholar 

  152. Lietzau M, et al. Apicoectomy using Er:YAG laser in association with microscope: a comparative retrospective investigation. Photomed Laser Surg. 2013;31(3):110–5.

    Article  PubMed  Google Scholar 

  153. Bodrumlu E, et al. Temperature variation during apicectomy with Er:YAG laser. Photomed Laser Surg. 2012;30(8):425–8.

    Article  PubMed  Google Scholar 

  154. Dutch Working party Infection Prevention (WIP). Infection prevention when using laser instruments [website] Dec 2003 [Cited 2007 Nov]; WIP: [Available from: http://www.wip.nl].

  155. Piccione PJ. Dental laser safety. Dent Clin N Am. 2004;48(4):795–807. v.

    Article  PubMed  Google Scholar 

  156. Andersen E, Aars H, Brodin P. Effects of cooling and heating of the tooth on pulpal blood flow in man. Endod Dent Traumatol. 1994;10(6):256–9.

    Article  PubMed  Google Scholar 

  157. Nyborg H, Brannstrom M. Pulp reaction to heat. J Prosthet Dent. 1968;19(6):605–12.

    Article  PubMed  Google Scholar 

  158. Powell GL, Morton TH, Whisenant BK. Argon laser oral safety parameters for teeth. Lasers Surg Med. 1993;13(5):548–52.

    Article  PubMed  Google Scholar 

  159. Armengol V, Jean A, Marion D. Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin. J Endod. 2000;26(3):138–41.

    Article  PubMed  Google Scholar 

  160. Glockner K, et al. Intrapulpal temperature during preparation with the Er:YAG laser compared to the conventional burr: an in vitro study. J Clin Laser Med Surg. 1998;16(3):153–7.

    PubMed  Google Scholar 

  161. Capelli A, et al. In vitro evaluation of the thermal alterations on the root surface during preparation with different Ni-Ti rotary instruments. Braz Dent J. 2004;15(2):115–8.

    Article  PubMed  Google Scholar 

  162. Eriksson JH, Sundstrom F. Temperature rise during root canal preparation–a possible cause of damage to tooth and periodontal tissue. Swed Dent J. 1984;8(5):217–23.

    PubMed  Google Scholar 

  163. Walters JD, Rawal SY. Severe periodontal damage by an ultrasonic endodontic device: a case report. Dent Traumatol. 2007;23(2):123–7.

    Article  PubMed  Google Scholar 

  164. Barkhordar RA, et al. Evaluation of temperature rise on the outer surface of teeth during root canal obturation techniques. Quintessence Int. 1990;21(7):585–8.

    PubMed  Google Scholar 

  165. Bailey GC, et al. Ultrasonic condensation of gutta-percha: the effect of power setting and activation time on temperature rise at the root surface - an in vitro study. Int Endod J. 2004;37(7):447–54.

    Article  PubMed  Google Scholar 

  166. Lee FS, Van Cura JE, BeGole E. A comparison of root surface temperatures using different obturation heat sources. J Endod. 1998;24(9):617–20.

    Article  PubMed  Google Scholar 

  167. Weller RN, Koch KA. In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha. Int Endod J. 1995;28(2):86–90.

    Article  PubMed  Google Scholar 

  168. Lee BS, et al. Thermal effect and morphological changes induced by Er:YAG laser with two kinds of fiber tips to enlarge the root canals. Photomed Laser Surg. 2004;22(3):191–7.

    Article  PubMed  Google Scholar 

  169. Schoop U, et al. The impact of an erbium, chromium:yttrium-scandium-gallium-garnet laser with radial-firing tips on endodontic treatment. Lasers Med Sci. 2009;24(1):59–65. Epub 2007 Nov 20.

    Google Scholar 

  170. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101–7.

    Article  PubMed  Google Scholar 

  171. Gutknecht N, et al. Long-term clinical evaluation of endodontically treated teeth by Nd:YAG lasers. J Clin Laser Med Surg. 1996;14(1):7–11.

    PubMed  Google Scholar 

  172. Machida T, et al. Study on temperature raising in tooth structure at irradiating Er:YAG laser. J Jpn Endod Assoc. 1996;17:38–40.

    Google Scholar 

  173. Machida T, et al. Root canal preparation using the second harmonic KTP:YAG laser: a thermographic and scanning electron microscopic study. J Endod. 1995;21(2):88–91.

    Article  PubMed  Google Scholar 

  174. Sauk JJ, et al. Expression of heat stress proteins by human periodontal ligament cells. J Oral Pathol. 1988;17(9–10):496–9.

    Article  PubMed  Google Scholar 

  175. Kimura Y, et al. Root surface temperature increase during Er:YAG laser irradiation of root canals. J Endod. 2002;28(2):76–8.

    Article  PubMed  Google Scholar 

  176. Theodoro LH, et al. Effect of ER:YAG and diode laser irradiation on the root surface: morphological and thermal analysis. J Periodontol. 2003;74(6):838–43.

    Article  PubMed  Google Scholar 

  177. Kane SA. Introduction to physics in modern medicine. London/New York: Talyor & Francis; 2003.

    Google Scholar 

  178. Moriyama EH, et al. Optothermal transfer simulation in laser-irradiated human dentin. J Biomed Opt. 2003;8(2):298–302.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy George BDS, MDS, PhD, ADC, GCHE, MRACDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

George, R., Walsh, L.J. (2017). Laser-Assisted Endodontics. In: Coluzzi, D., Parker, S. (eds) Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-51944-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51944-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51943-2

  • Online ISBN: 978-3-319-51944-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics