Skip to main content

Laser-Assisted Diagnostics

  • Chapter
  • First Online:
Lasers in Dentistry—Current Concepts

Abstract

An objective and accurate diagnosis is an essential and key component in the formulation of safe, comprehensive management, and treatment of dental patients. The framework of such diagnosis should be based on clear criteria, applied with sound diagnostic methodologies which can assess, grade and detect the presenting symptoms of any individual case. Various diagnostic approaches therefore play an essential part in developing a provisional and final diagnosis, from which treatment modalities and strategy can then be planned and implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stokes GG. On the change of refrangibility of light. Phil Trans R Soc Lond. 1852;142:463–562.

    Article  Google Scholar 

  2. Raman CV. A new radiation. Indian J Phys. 1928;2:387–98.

    Google Scholar 

  3. Raman CV. A new radiation. Indian J Phys. 1928;2:399–419.

    Google Scholar 

  4. Letokhov VS. Laser-induced chemistry. Nature. 1983;305:103–8.

    Article  Google Scholar 

  5. Blank M. Biological effects of electromagnetic fields. Bioelectrochem Bioenerg. 1993;32:203–10.

    Article  Google Scholar 

  6. Lakhovsky G. The secret of life: electricity, radiation and your body. Costa Mesa: Noontide Press; 1992. p. 214.

    Google Scholar 

  7. Warnke U. Influence of light on cellular respiration. In: Popp F-A, et al., editors. Electromagnetic bio-information. Munchen: Urban & Schwarzenberg; 1989. p. 213–20.

    Google Scholar 

  8. Pohl RW. Optik und Atomphysik. Berlin/New York: Springer; 1976.

    Book  Google Scholar 

  9. Ditchburn RW. Light. New York: Dover Publications; 1961. p. 407–8.

    Google Scholar 

  10. Waynant RW. Lasers in medicine. Boca Raton: CRC Press; 2011.

    Google Scholar 

  11. Arnat A, et al. The electric field induced by light can explain cellular responses to electromagnetic energy: A hypothesis of mechanism. J Photochem Photobiol B: Biol. 2006;82(2):152–60.

    Google Scholar 

  12. Grant EH, Sheppard RJ, South GP. Dielectric behaviour of biological molecules in solution. Oxford: Clarendon Press; 1978 (Chapter I).

    Google Scholar 

  13. Quaglino D, Capri M, Zecca L, Franceschi C, Ronchetti IP. The effect on rat thymocytes of the simultaneous in vivo exposure to 50- Hz electric and magnetic field and to continuous light. ScientificWorldJournal. 2004;4(Suppl 2):91–9.

    Article  PubMed  Google Scholar 

  14. Niemz MH. Laser-tissue interactions fundamentals and applications. 3rd edn. 2007:47–9. doi:10.1007/978-3-540-72192-5; ISBN:978-3-540-72191-8.

  15. Foote CS. Mechanisms of photosensitized oxidation. Science. 1968;162:963–70.

    Article  PubMed  Google Scholar 

  16. Lichtman JW, Conchello JW. Fluorescence microscopy. Nat Methods. 2005;2(12):910–9.

    Article  PubMed  Google Scholar 

  17. Koenig K, Schneckenburger H. Laser-induced autofluorescence for medical diagnosis. J Fluoresc. 1994;4(1):17–40.

    Article  PubMed  Google Scholar 

  18. Chance B, et al. Intracellular oxidation-reduction states in vivo. Science. 1962;137:499–508. 18.

    Article  PubMed  Google Scholar 

  19. Chance B, Jobsis FF. Changes in fluorescence in a frog sartorius muscle following a twitch. Nature. 1959;184:195–6.

    Article  Google Scholar 

  20. Mayevski A. Microcirculatory and ionic responses to ischemia in the Mongolian gerbil. In:Microcirculation in circulatory disorders. Berlin: Springer; 1998. p. 273–6.

    Google Scholar 

  21. Mayevsky A, Nioka S, Chance B. Fiber optic surface fluorometry/reflectometry and 31-p-NMR for monitoring the intracellular energy state in vivo. Adv Exp Med Biol. 1988;222:365–74.

    Article  PubMed  Google Scholar 

  22. Lohmann W, Paul E. In situ detection of melanomas by fluorescence measurements. Naturwissenschaften. 1988;75:201–2.

    Article  PubMed  Google Scholar 

  23. Lohmann W, Mussmann J, Lohmann C, Künzel W. Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma. Eur J Obstet Gynecol Reprod Biol. 1989;31:249–53.

    Article  PubMed  Google Scholar 

  24. Lohmann W, Hirzinger B, Braun J, Schwemmle K, Muhrer K-H, Schulz A. Fluorescence studies on lung tumors. Z Naturforsch C. 1990;45:1063–6.

    PubMed  Google Scholar 

  25. Ra H, et al. Detection of non-melanoma skin cancer by in vivo fluorescence imaging with fluorocoxib A. Neoplasia. 2015;17(2):201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res. 2008;14(8):2396–404. doi:10.1158/1078-0432.CCR-07-1609.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arifler D, Pavlova I, Gillenwater A, Richards-Kortum R. Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophys J. 2007;92:3260–74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pavlova I, Sokolov K, Drezek R, Malpica A, Follen M, Richards-Kortum R. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem Photobiol. 2003;77(5):550–5.

    Article  PubMed  Google Scholar 

  29. Pavlova I. Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue applications for diagnosis of oral precancer. J Biomed Opt. 2008;13(6):064012. doi:10.1117/1.3006066.

  30. Roblyer D, Kurachi C, Stepanek V, Williams MD, El-Naggar AK, Lee JJ, Gillenwater AM, Richards-Kortum R. Objective Detection and Delineation of Oral Neoplasia Using Autofluorescence Imaging. Cancer Prev Res (Phila). 2009;2(5):423–31. Published online 2009 Apr 28. doi:10.1158/1940-6207.CAPR-08-0229.

    Article  Google Scholar 

  31. Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol. 2010;6(7):1143–54. doi:10.2217/fon.10.79.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lane PM, Gilhuly T, Whitehead P, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11(2):024006.

    Article  PubMed  Google Scholar 

  33. Poh CF, Ng SP, Williams PM, et al. Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head Neck. 2007;29(1):71–6.

    Article  PubMed  Google Scholar 

  34. Poh CF, MacAulay CE, Zhang L, Rosin MP. Tracing the «at-risk» oral mucosa field with autofluorescence: steps toward clinical impact. Cancer Prev Res. 2009;2(5):401–4.

    Google Scholar 

  35. McNamara KK, Martin BD, Evans EW, Kalmar JR. The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:636–43.

    Article  PubMed  Google Scholar 

  36. Balasubramaniam AM, Sriraman R, Sindhuja P, Mohideen K, Parameswar RA, Haris KTM. Autofluorescence based diagnostic techniques for oral cancer. J Pharm Bioallied Sci. 2015;7(Suppl 2):S374–7. doi:10.4103/0975-7406.163456.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yuanlong Y, Yanming Y, Fuming L, Yufen L, Paozhong M. Characteristic autofluorescence for cancer diagnosis and its origin. Lasers Surg Med. 1987;7(6):528–32.

    Article  Google Scholar 

  38. Koenig K, Hemmer J, Schneckenburger H. In: Spinelli P, DalFante M, Marchesini R, editors. Photodynamic therapy and biomedical lasers. Elsevier/Amsterdam: Excerpta Medica; 1992. p. 903–6.

    Google Scholar 

  39. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wessels R, De Bruin DM, Faber DJ, Van Leeuwen TG, Van Beurden M, Ruers TJM. Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med Sci. 2014;29:1297–305.

    PubMed  Google Scholar 

  41. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt. 2004;9(2):292–8.

    Article  PubMed  Google Scholar 

  42. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol. 2006;55(3):408–12.

    Article  PubMed  Google Scholar 

  43. Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stucker M, Altmeyer P, Bechara FG. In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci. 2007;45(3):167–73.

    Article  PubMed  Google Scholar 

  44. Mogensen M, Nurnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GB. In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol. 2009;160(5):1026–33.

    Article  PubMed  Google Scholar 

  45. Mogensen M, Joergensen TM, Nurnberg BM, Morsy HA, Thomsen JB, Thrane L, Jemec GB. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg. 2009;35(6):965–72.

    Article  PubMed  Google Scholar 

  46. de Giorgi SM, Massi D, Mavilia L, Cappugi P, Carli P. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol. 2005;14(1):56–9.

    Article  PubMed  Google Scholar 

  47. Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, Stucker M, Altmeyer P, Hoffmann K. Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol. 2007;57(4):629–37.

    Article  PubMed  Google Scholar 

  48. Adegun OK, Tomlins PH, Hagi-Pavli E, Mckenzie G, Piper K, Bader DL, Fortune F. Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues. Lasers Med Sci. 2012;27:795–804. doi:10.1007/s10103-011-0975-1.

    Article  PubMed  Google Scholar 

  49. Adegun OK, Tomlins PH, Hagi-Pavli E, Mckenzie G, Piper K, Bader DL, Fortune F. Quantitative optical coherence tomography of fluid-filled oral mucosal lesions. Lasers Med Sci. 2013;28:1249–55. doi:10.1007/s10103-012-1208-y.

    Article  PubMed  Google Scholar 

  50. Masterrs BR, So PTC, Gratton E. Optical biopsy of in vivo human skin: multiphoton excitation microscopy. Lasers Med Sci. 1998;13:196–203.

    Article  Google Scholar 

  51. Skoog DA, Holler FJ, Nieman TA. Principles of instrumental analysis. Philadelphia: Saunders College Pub; 1998.

    Google Scholar 

  52. Helmenstine AM. Analytical chemistry definition; 2014. http://chemistry.about.com/od/chemistryglossary/a/analyticaldef.htm.

  53. Kumar A, Yueh FY, Singh JP, Burgess S. Characterization of malignant tissue cells by laser-induced breakdown spectroscopy. Appl Optics. 2004;43:5399–403.

    Article  Google Scholar 

  54. Kanawade R, Mahari F, Klampfl RM, Knipfer C, Tangermann-Gerk K, Adler W, Schmidt M, Stelzle F. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems. J Biophotonics. 2015;8(1–2):153–61.

    Article  PubMed  Google Scholar 

  55. Kramida A, Ralchenko Y, Reader J. NIST Atomic Spectra Database (ver. 5.0), National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/asd. 2012.

  56. Berger AJ, Zhu Q, Quivey RG. Raman spectroscopy of oral bacteria. Munich: European Conference on Biomedical Optics; 2003.

    Google Scholar 

  57. Zhu Q, Quivey Jr RG, Berger AJ. Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy. J Biomed Opt. 2004;9(6):1182–6.

    Article  PubMed  Google Scholar 

  58. Zhu Q, Quivey Jr RG, Berger AJ. Raman spectroscopic measurement of relative concentrations in mixtures of oral bacteria. Appl Spectros. 2007;61:1233–7. 47.

    Article  Google Scholar 

  59. Beier BD, Quivey RG, Berger AJ. Raman microspectroscopy for species identification and mapping within bacterial biofilms. AMB Express. 2012;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Maquelin K, Choo-Smith L-P, Endtz HP, Bruining HA, Puppels GJ. Rapid identification of candida species by confocal Raman microspectroscopy. J Clin Microbiol. 2002;40(2):594–600.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Puppels GJ, Demul FFM, Otto C, Greve J, Robertnicoud M, et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 1990;347:301–3.

    Article  PubMed  Google Scholar 

  62. Puppels GJ, Colier W, Olminkhof JHF, Otto C, Demul FFM, et al. Description and performance of a highly sensitive confocal Raman microspectrometer. J Raman Spectrosc. 1991;22:217–25.

    Article  Google Scholar 

  63. Puppels GJ, Olminkhof JHF, Segersnolten GMJ, Otto C, Demul FM, et al. Laser irradiation and Raman spectroscopy of single living cells and chromosomes – sample degradation occurs with 514.5 nm but not with 660 nm laser light. Exp Cell Res. 1991;195:361–7.

    Article  PubMed  Google Scholar 

  64. Nelson WH, Manoharan R, Sperry JF. UV resonance Raman studies of bacteria. Appl Spectrosc Rev. 1992;27:67–124.

    Article  Google Scholar 

  65. Manoharan R, Ghiamati E, Britton KA, Nelson WH, Sperry JF. Resonance Raman spectra of aqueous pollen suspensions with 222.5–242.4-nm pulsed laser excitation. Appl Spectrosc. 1991;45:307–11.

    Article  Google Scholar 

  66. Ghiamati E, Manoharan R, Nelson WH, Sperry JF. UV Resonance Raman Spectra of Bacillus Spores. Appl Spectrosc. 1992;46(2):357–64.

    Google Scholar 

  67. Manoharan R, Ghiamati E, Sperry JF, Nelson WH. Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis. Abstr Pap Am Chem Soc. 1990;200:138–BIOT.

    Google Scholar 

  68. Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, et al. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J. 2006;90:648–56.

    Article  PubMed  Google Scholar 

  69. Chan JW, Taylor DS, Lane S, Zwerdling T, Tuscano J, et al. Non-destructive identification of individual Leukemia cells by laser tweezers Raman spectroscopy. Anal Chem. 2008;80:2180–7.

    Article  PubMed  Google Scholar 

  70. Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science. 1987;235:1517–20.

    Article  PubMed  Google Scholar 

  71. Padgett MJ, Molloy J, McGloin D. Optical tweezers: methods and applications. CRC Press; Taylor and Francis Group, Boca Raton, Fl, 2010. p. 1–3; ISBN:13:978-1-4200-7414-7.

    Google Scholar 

  72. Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy anal. Chem. 2004;76:599–603.

    Google Scholar 

  73. Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy, anal. Chem. 2008;80:2180–7.

    Google Scholar 

  74. Huang SS, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li YQ. Levels of Ca2-dipicolinic acid in individual Bacillus spores determined using microfluidic Raman tweezers. J Bacteriol. 2007;189(13):4681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Paidhungat M, Setlow B, Driks A, Setlow P. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol. 2000;182:5505–12.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Setlow B, Atluri S, Kitchel R, Koziol-Dube K, Setlow P. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β type small acid-soluble proteins. J Bacteriol. 2006;188:3740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst. 2006;131:875–85.

    Article  PubMed  Google Scholar 

  78. Mahadevan-Jansen A, Patil C, Pence I. Raman spectroscopy: from benchtop to bedside. In: Vo-Dinh T, editor. Biomedical photonics handbook. 2nd ed. Boca Raton: CRC Press; 2014. p. 759–802.

    Google Scholar 

  79. Nguyen JQ, Gowani ZS, O’Connor M, Pence IJ, Nguyen TQ, Holt GE, Schwartz HS, Halpern JL, Mahadevan-Jansen A. Intraoperative Raman spectroscopy of soft tissue sarcomas. Lasers Surg Med. 2016; doi:10.1002/lsm.22564.

    PubMed Central  Google Scholar 

  80. Escoriza MF, Vanbriesen JM, Stewart S, Maier J. Raman Spectroscopic Discrimination of Cell Response to Chemical and Physical Inactivation. Appl Spectrosc. 2007;61(8).

    Google Scholar 

  81. Nan XL, Tonary AM, Stolow A, Xie XS, Pezacki JP. Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-stokes Raman scattering microscopies. Chembiochem. 2006;7:1895–7.

    Article  PubMed  Google Scholar 

  82. Buschman HP, Marple ET, Wach ML, Bennett B, Schut TCB, et al. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem. 2000;72:3771–5.

    Article  PubMed  Google Scholar 

  83. Mostaco-Guidolin LB, Sowa MG, Ridsdale A, Pegoraro AF, Smith MS, et al. Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging. Biomed Opt Express. 2010;1:59–73.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Motz JT, Fitzmaurice M, Miller A, Gandhi SJ, Haka AS, et al. In vivo Raman spectral pathology of human atheroscle atherosclerosis and vulnerable plaque. J Biomed Opt. 2006;11:021003.

    Article  PubMed  Google Scholar 

  85. Zhang X, Yonzon CR, Van Duyne RP. An electrochemical surface-enhanced Raman spectroscopy approach to anthrax detection. Proc of SPIE. 2003;5221:82–91.

    Google Scholar 

  86. White DJ. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res. 1995;9:175–93.

    Article  PubMed  Google Scholar 

  87. Young DA, Featherstone JDB. Digital imaging fiber-optic transillumination, F-speed radiographic film and depth of approximal lesions. J Am Dent Assoc. 2005;136(12):1682–7.

    Article  PubMed  Google Scholar 

  88. Bin-Shuwaish M, Yaman P, Dennison J, Neiva G. The correlation of DIFOTI to clinical and radiographic images in Class II carious lesions. J Am Dent Assoc. 2008;139(10):1374–81.

    Article  PubMed  Google Scholar 

  89. Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with Digital Imaging Fiber- Optic Trans Illumination (DIFOTI): in vitro study. Caries Res. 1997;31(2):103–10.

    Article  PubMed  Google Scholar 

  90. Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health. 2015;15(Suppl 1):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tam LE, McComb D. Diagnosis of occlusal caries: part II. Recent diagnostic technologies. J Can Dent Assoc. 2001;67(8):459–63.

    PubMed  Google Scholar 

  92. Fejerskov O, Kidd E. Dental caries: the disease and its clinical management. 2nd ed. Oxford/Ames: Wiley-Blackwell; 2008.

    Google Scholar 

  93. Bjelkhagen H, Sundström F. A clinically applicable laser luminescence method for the early detection of dental caries. IEEE J Quant Electron. 1981;17(12):2580–2.

    Article  Google Scholar 

  94. de Josselin de Jong E, Sundström F, Westerling H, Tranæus S, ten Bosch JJ, Angmar-Månsson B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res. 1995;29(1):2–7.

    Article  PubMed  Google Scholar 

  95. Karlsson L, Tranæus S. Supplementary methods for detection and quantification of dental caries. J Laser Dent. 2008;16(1):6–14.

    Google Scholar 

  96. van der Veen MH, Thomas RZ, Huysmans MC, de Soet JJ. Red autofluorescence of dental plaque bacteria. Caries Res. 2006;40(6):542–5.

    Article  PubMed  Google Scholar 

  97. Banerjee A, Boyde A. Autofluorescence and mineral content of carious dentine: scanning optical and backscattered electron microscopic studies. Caries Res. 1998;32(3):219–26.

    Article  PubMed  Google Scholar 

  98. Rechmann P, Liou SW, Rechmann BMT, Featherstone JDB. Soprocare – 450 nm wavelength detection tool for microbial plaque and gingival inflammation – a clinical study. In: Rechmann P, Fried D. Lasers in dentistry XX, vol 8929. Proceedings of SPIE; San Francisco, California, United States 2014. p. 892906. doi: 10.1117/12.2047275

  99. Akarsu S, Köprülü H. In vivo comparison of the efficacy of DIAGNOdent by visual inspection and radiographic diagnostic techniques in the diagnosis of occlusal caries. J Clin Dent. 2006;17(3):53–8.

    PubMed  Google Scholar 

  100. Barbería E, Maroto M, Arenas M, Silva CC. A clinical study of caries diagnosis with a laser fluorescence system. J Am Dent Assoc. 139(5):572–9.

    Google Scholar 

  101. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci. 2001;109(1):14–9.

    Article  PubMed  Google Scholar 

  102. Konig K, Flemming G, Hibst R. Laser- induced autofluorescence spectroscopy of dental caries. Cell Mol Biol (Noisy-le-grand). 1999;44(8):1293–300.

    Google Scholar 

  103. Beauchamp J, Caufield PW, Crall JJ, Donly K, Feigal R, Gooch B, Ismail A, Kohn W, Siegal M, Simonsen R ; American Dental Association Council on Scientific Affairs. Evidence-based clinical recommendations for the use of pit-and-fissure sealants: a report of the American Dental Association Council on Scientific Affairs. JADA. 2008;139:257–68. http://jada.ada.org.

  104. Makowski AJ, Patil CA, Mahadevan-Jansen A, Nyman JS. Polarization control of Raman spectroscopy optimizes the assessment of bone tissue. J Biomed Opt. 2013;18(5):055005.

    Article  PubMed Central  Google Scholar 

  105. Ko AC-T, Choo-Smith L -P’i, Hewko M, Leonardi L, Sowa MG. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt. 2005;10(3):031118.

    Article  PubMed  Google Scholar 

  106. Feldchtein FI, Gelikonov GV, Gelikonov VM, Iksanov RR, Kuranov RV, Sergeev AM, Gladkova ND, Ourutina MN, Warren Jr JA, Reitze DH. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3:239–50.

    Article  PubMed  Google Scholar 

  107. de Carvalho FB, Barbosa AFS, Zanin FAA, Júnior AB, Júnior LS, Pinheiro ALB. Use of laser fluorescence in dental caries diagnosis: a fluorescence x bio molecular vibrational spectroscopic comparative study. Braz Dent J. 2013;24(1):59–63.

    Article  PubMed  Google Scholar 

  108. Coello B, López-Álvarez M, Rodríguez-Domínguez M, Serra J, González P. Quantitative evaluation of the mineralization level of dental tissues by Raman spectroscopy. Biomed Phys Eng Express. 2015;1:045204.

    Article  Google Scholar 

  109. Xu C, Wang Y. Chemical composition and structure of peritubular and intertubular human dentine revisited. Arch Oral Biol. 2012;57:383–91.

    Article  PubMed  Google Scholar 

  110. Boskey AL, Mendelsohn R. Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc. 2005;38(1–2):107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shimada Y, Sadr A, Sumi Y, Tagami J. Application of Optical Coherence Tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Curr Oral Health Rep. 2015;2(2):73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hitzenberger CK, Gotzinger E, Sticker M, Pircher M, Fercher AF. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express. 2001;9:780–90.

    Article  PubMed  Google Scholar 

  113. Fried D, Xie J, Shafi S, Featherstone JDB, Breunig TM, Lee C. Imaging carious lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt. 2002;7:618–27.

    Article  PubMed  Google Scholar 

  114. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt. 1999;38(10):2092–6.

    Article  PubMed  Google Scholar 

  115. Amaechi BT, Higham SM, Podoleanu AG, Rogers JA, Jackson DA. Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J Oral Rehabil. 2001;28:1092–3.

    Article  PubMed  Google Scholar 

  116. Gossage KW, Tkaczyk TS, Rodriguez JJ, Barton JK. Texture analysis of optical coherence tomography images: feasibility for tissue classification. J Biomed Opt. 2003;8:570–5. doi:10.1117/1.1577575.

    Article  PubMed  Google Scholar 

  117. Mandurah MM, Sadr A, Bakhsh TA, Shimada Y, Sumi Y, Tagami J. Characterization of transparent dentin in attrited teeth using optical coherence tomography. Lasers Med Sci. 2015;30(4):1189–96. doi:10.1007/s10103-014-1541-4.

    Article  PubMed  Google Scholar 

  118. Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent. 2010;38(8):655–65. doi:10.1016/j.jdent.2010.05.004. Epub 2010 May 12.

    Article  PubMed  Google Scholar 

  119. Makishi P, Shimada Y, Sadr A, Tagami J, Sumi Y. Non-destructive 3D imaging of composite restorations using optical coherence tomography: marginal adaptation of self-etch adhesives. J Dent. 2011;39(4):316–25. doi:10.1016/j.jdent.2011.01.011.

    Article  PubMed  Google Scholar 

  120. Bakhsh TA, Sadr A, Shimada Y, Tagami J, Sumi Y. Non-invasive quantification of resin-dentin interfacial gaps using optical coherence tomography: validation against conforcal microscopy. Dent Mater. 2011;27(9):915–25.

    Article  PubMed  Google Scholar 

  121. Todea C, Balabuc C, Sinescu C, et al. En face optical coherence tomography investigation of apical microleakage after laser assisted endodontic treatment. Lasers Med Sci. 2010;25:629. doi:10.1007/s10103-009-0680-5.

    Article  PubMed  Google Scholar 

  122. Ambartsumyan RV, Basov NG, Boiko VA, Zuev VS, Krokhin N, Kryukov PG, Senat-Skii YV, Stoilov YY. Heating of matter by focused laser radiation. J Exptl Theoret Phys (U.S.S.R.). 1965;48:1583–7.

    Google Scholar 

  123. Baudelet M, Smith BW. The first years of laser-induced breakdown spectroscopy. J Anal At Spectrom. 2013; doi:10.1039/C3JA50027F.

    Google Scholar 

  124. Niemz MH. Diagnosis of caries by spectral analysis of laser induced plasma sparks. Proc SPIE. 1994;2327:56.

    Article  Google Scholar 

  125. Samek O, Telle HH, Beddows DCS. Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth. BMC Oral Health. 2001;1:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Singh VK, Kumar V, Sharma J. Importance of laser-induced breakdown spectroscopy for hard tissues (bone, teeth) and other calcified tissue materials. Lasers Med Sci. 2015;30:1763–78.

    Article  PubMed  Google Scholar 

  127. Fang X, Ahmad SR, Mayo M, Iqbal S. Elemental analysis of urinary calculi by laser-induced plasma spectroscopy. Lasers Med Sci. 2005;20:132–7.

    Article  PubMed  Google Scholar 

  128. Singh VK, Rai AK, Rai PK, Jindal PK. Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy. Lasers Med Sci. 2009;24:749–59.

    Article  PubMed  Google Scholar 

  129. Anzano J, Lasheras RJ. Strategies for the identification of urinary calculus by laser induced breakdown spectroscopy. Talanta. 2009;79:352–60.

    Article  PubMed  Google Scholar 

  130. Pathak AK, Rai S, Singh VK, Rai NK, Rai AK. PCA of LIBS spectra to differentiate healthy and caries affected part of teeth sample. In: Rai AK, Das IML, Uttam KN, editors. Emerging trends in laser and spectroscopy and applications. New Delhi: Allied Publishers; 2010. p. 279–86.

    Google Scholar 

  131. Pathak AK, Singh VK, Rai NK, Rai AK, Rai PK, Rai PK, Rai S, Baruah GD. Study of different concentric rings inside gallstones with LIBS. Lasers Med Sci. 2011; doi:10.1007/ s10103-011-0886-1.

    PubMed  Google Scholar 

  132. Wu J, Zhang W, Shao X, Lin Z, Liu X. Simulated body fluid by laser-induced breakdown spectroscopy. Chin J Laser B. 2008;35:445–7.

    Article  Google Scholar 

  133. Migitaa M, Kamiyama I, Matsuzaka K, Nakamura A, Souta T, Aizawa K, Shibahara T. Photodynamic diagnosis of oral carcinoma using talaporfin sodium and a hyperspectral imaging system: an animal study. Asian J Oral Maxillofac Surg. 2010;22(3):126–32.

    Article  Google Scholar 

  134. Chang CJ, Lin MS, Hwang PS, Cheng SMH. Topical application of Photofrin® for oral neoplasms in animal. Opt Quant Electron. 2005;37:1353–65.

    Article  Google Scholar 

  135. Riva C, Ross B, Benedek GB. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol. 1972;11:936–44.

    PubMed  Google Scholar 

  136. Gazelius B, Olgart L, Edwall B, Edwall L. Non-invasive recording of blood flow in human dental pulp. Endod Dent Traumatol. 1986;2:219–21.

    Article  PubMed  Google Scholar 

  137. Olgart L, Gazelius B, Lindh-Strömberg U. Laser Doppler flowmetry in assessing vitality in luxated permanent teeth. Int Endod J. 1988;21:300–6.

    Article  PubMed  Google Scholar 

  138. Andreasen FM, Andreasen JO. Luxation injuries. In: Andreasen JO, Andreasen FM, editors. Textbook and color Atlas of traumatic injuries to the teeth. 3rd ed. Copenhagen: Munksgaard; 1994. p. 353–4.

    Google Scholar 

  139. Ebihara A, Tokita Y, Izawa T, Suda H. Pulpal blood flow assessed by laser Doppler flowmetry in a tooth with a horizontal root fracture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81:229–33.

    Article  PubMed  Google Scholar 

  140. Ikawa M, Komatsu H, Ikawa K, Mayanagi H, Shimauchi H. Age-related changes in the human pulpal blood flow measured by laser Doppler flowmetry. Dent Traumatol. 2003;19:36–40.

    Article  PubMed  Google Scholar 

  141. Babacan H, Doruk C, Bicakci AA. Pulpal blood flow changes due to rapid maxillary expansion. Angle Orthod. 2010;80:1136–40.

    Article  PubMed  Google Scholar 

  142. Cho JJ, Efstratiadis S, Hasselgren G. Pulp vitality after rapid palatal expansion. Am J Orthod Dentofacial Orthop. 2010;137:254–8.

    Article  PubMed  Google Scholar 

  143. Chen E, Goonewardene M, Abbott P. Monitoring dental pulp sensibility and blood flow in patients receiving mandibular orthognathic surgery. Int Endod J. 2012;45:215–23.

    Article  PubMed  Google Scholar 

  144. Emshoff R, Kranewitter R, Norer B. Effect of Le Fort I osteotomy on maxillary tooth-type-related pulpal blood-flow characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:88–90.

    Article  PubMed  Google Scholar 

  145. Emshoff R, Kranewitter R, Gerhard S, Norer B, Hell B. Effect of segmental Le Fort I osteotomy on maxillary tooth type-related pulpal blood-flow characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:749–52.

    Article  PubMed  Google Scholar 

  146. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont. 1998;11:491–501.

    PubMed  Google Scholar 

  147. Riecke B, Heiland M, Hothan A, Morlock M, Amling M, Blake FA. Primary implant stability after maxillary sinus augmentation with autogenous mesenchymal stem cells: a biomechanical evaluation in rabbits. Clin Oral Implants Res. 2011;22:1242–6.

    Article  PubMed  Google Scholar 

  148. Jafarzadeh H. Laser Doppler flowmetry in endodontics: a review. Int Endod J. 2009;42:476–90.

    Article  PubMed  Google Scholar 

  149. Polat S, Er K, Polat NT. Penetration depth of laser Doppler flowmetry beam in teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:125–9.

    Article  PubMed  Google Scholar 

  150. Wilder-Smith PEEB. A new method for the non-invasive measurement of pulpal blood flow. Int Endod J. 1988;21:307–12.

    Article  PubMed  Google Scholar 

  151. Evans D, Reid J, Strang R, Stirrups D. A comparison of laser Doppler flowmetry with other methods of assessing the vitality of traumatised anterior teeth. Endod Dent Traumatol. 1999;15:284–90.

    Article  PubMed  Google Scholar 

  152. Roeykens HJJ, Van Maele GOG, De Moor RJC, Martens LCM. Reliability of laser Doppler flowmetry in a 2-probe assessment of pulpal blood flow. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:742–8.

    Article  PubMed  Google Scholar 

  153. Roebuck EM, Evans DJP, Stirrups D, Strang R. The effect of wavelength, bandwidth, and probe design and position on assessing the vitality of anterior teeth with laser Doppler flowmetry. Int J Paediatr Dent. 2000;10:213–20.

    Article  PubMed  Google Scholar 

  154. Limjeerajarus C. Laser Doppler flowmetry: basic principle, current clinical and research applications in dentistry. CU Dent J. 2014;37:123–36.

    Google Scholar 

  155. Del Giudice E, Doglia S, Milani M. Order and structures in living systems. In: Ross Adey W, Lawrence AF, editors. Nonlinear electrodynamics in biological systems. New York/London: Plenum Press; 1983. p. 477–88.

    Google Scholar 

  156. Adey WR. Frequency and power windowing in tissue interactions with weak electromagnetic fields. Proc IEEE. 1980;63(1):119–25.

    Article  Google Scholar 

Suggested Further Reading

  1. Kincade K. Raman spectroscopy enhances in vivo diagnosis. Laser Focus World. 1998:83–91.

    Google Scholar 

  2. How a Raman instrument works. ► http://nicolet.com/theory.html#Raman.

  3. Fejerskov O, Kidd E. Dental caries: the disease and its clinical management. Wiley; 2009.

    Google Scholar 

  4. Minet O, Müller GJ, Beuthan J. Selected papers on optical tomography: fundamentals and applications in medicine Volume 147 of SPIE milestone series, V. MS 147 SPIE Optical Engineering Press; 1998. ISBN 0819428779, 9780819428776.

    Google Scholar 

Download references

Acknowledgment

The contributor gratefully acknowledges the support of Dr. Steven Parker, Professor (a.c), University of Genova, Italy; Dr. Donald Coluzzi, Professor, University of San Francisco at California, USA; Dr. Stefano Benedicenti, Dean DiSC, University of Genova, Mirza Hasanuzzaman, Associate Professor, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh; and Daniel Mathews Muruppel, Project Leader, Kuwait Airways Corporation, Kuwait, towards his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Mathews Muruppel BDS, MDS, Dipl. LAS.DENT., FPFA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Muruppel, A.M. (2017). Laser-Assisted Diagnostics. In: Coluzzi, D., Parker, S. (eds) Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-51944-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51944-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51943-2

  • Online ISBN: 978-3-319-51944-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics