Skip to main content

Laser-Assisted Pediatric Dentistry

  • Chapter
  • First Online:

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

Abstract

The progress of laser application in dentistry is continuous. There are many debates between researchers, clinicians, and scientists who try to carry on research within and with respect to clinical everyday dental practice. The American Academy of Pediatric Dentistry acknowledges using lasers as scientifically documented, alternative, and/or adjunctive treatment provision methods of soft and hard tissue management for infants, children, adolescents, and persons with disabilities. The aim of this chapter is to describe the indications for their use in various therapeutic procedures in pediatric dentistry and to analyze the advantages and disadvantages compared to traditional techniques. Together with the appropriate child’s psychological management, proper presentation and approach with the laser is crucial. The technological evolution of dental lasers offers the possibility of completing several therapeutic procedures, such as removing carious dental tissue in permanent and deciduous teeth, usually with less or no anesthesia, performing laser-assisted pulpotomy and pulpectomy, soft tissue interventions, dental trauma, etc. Depending on the treatment procedure and the targeted chromophores, all laser wavelengths could be used (e.g., KTP, diodes, Nd:YAG, erbium family lasers, CO2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koch G, Poulsen S. Pediatric dentistry. A clinical approach. 1st ed. Copenhagen: Munksgaard; 2001.

    Google Scholar 

  2. AAPD. Oral health polices. Policy on the use of lasers for pediatric dental patients. (http://www.aapd.org/policies/quidelines) Reference manual 2015-16. Pediatr Dent. 2015;37(6):79–81.

  3. AAPD. Clinical Practice Guidelines on Guideline on Behavior Guidance for the Pediatric Dental Patient. (http://www.aapd.org/policies/quidelines) Reference manual 2015-16. Pediatr Dent. 2015;37(6):180–93.

  4. Poli R, Parker S. Achieving Dental Analgesia with the Erbium Chromium Yttrium Scandium Gallium Garnet Laser (2780 nm): a protocol for painless conservative treatment. Photomed Laser Surg. 2015;33(7):364–71.

    Article  PubMed  Google Scholar 

  5. Olivi G, Magnolis FS, Genovese MD. Treatment considerations, Chapter 4. In:Pediatric laser dentistry. A user’s guide. Chicago: Quintessence Publishing Co, Inc; 2011.

    Google Scholar 

  6. Moritz A. Oral laser application. Berlin: Quintessenz Verlags-GmbH; 2006.

    Google Scholar 

  7. Vitale MC, Caprioglio C. Lasers in dentistry. Practical text book. Bologna: Edizioni Martina s.r, l; 2010.

    Google Scholar 

  8. Kato J, Moriya K, Jayawardena JA. Clinical application of Er:YAG laser for cavity preparation in children. J Clin Laser Med Surg. 2003;21(3):151–5.

    Article  PubMed  Google Scholar 

  9. Genovese MD, Olivi G. Laser in paediatric dentistry: patient acceptance of hard and soft tissue therapy. Eur J Paediatr Dent. 2008;9:13–7.

    PubMed  Google Scholar 

  10. Jacobsen T, Norlund A, Sandborgh Englund G, Tranaeus S. Application of laser technology for removal of caries: a systematic review of controlled clinical trials. Acta Odontol Scand. 2011;69:65–74.

    Article  PubMed  Google Scholar 

  11. Martens LC. Laser physics and a review of laser applications in dentistry for children. Eur Arch Paediatr Dent. 2011;12(2):61–7.

    Article  PubMed  Google Scholar 

  12. Monghini EM, Wanderley RL, Pecora JD, Palma-Dibb RG, Corona SAM, Borsatto MC. Shear bond strength to dentine of primary teeth irradiated with varying Er:YAG laser energies and SEM examination of the surface morphology. Lasers Surg Med. 2004;24:254–9.

    Article  Google Scholar 

  13. Wanderley RL, Monghini EM, Pecora JD, Palma-Dibb RG, Borsatto MC. Shear bond strength to enamel of primary teeth irradiated with varying Er:YAG laser energies and SEM examination of the surface morphology: an in vitro study. Photomed Laser Surg. 2005;23(3):260–7.

    Article  PubMed  Google Scholar 

  14. Lessa FC, Mantovani CP, Barroso JM, Chinelatti MA, Palma-Dibb RG, Pécora JD, Borsatto MC. Shear bond strength to primary enamel: influence of Er:YAG laser irradiation distance. J Dent Child (Chic). 2007;74(1):26–9.

    Google Scholar 

  15. Scatena C, Torres CP, Gomes-Silva JM, Contente MM, Pécora JD, Palma- Dibb RG, Borsatto MC. Shear strength of the bond to primary dentin: influence of Er:YAG laser irradiation distance. Lasers Med Sci. 2011;26(3):293–7.

    Article  PubMed  Google Scholar 

  16. Flury S, Koch T, Peutzfeldt A, Lussi A. Micromorphology and adhesive performance of Er:YAG laser-treated dentin of primary teeth. Lasers Med Sci. 2012;27(3):529–35.

    Article  PubMed  Google Scholar 

  17. Stiesch-Scholz M, Hannig M. In vitro study of enamel and dentin marginal integrity of composite and compomer restorations placed in primary teeth after diamond or Er:YAG laser cavity preparation. J Adhes Dent. 2000;2(3):213–22.

    PubMed  Google Scholar 

  18. Hossain M, Nakamura Y, Yamada Y, Murakami Y, Matsumoto K. Microleakage of composite resin restoration in cavities prepared by Er,Cr:YSGG laser irradiation and etched bur cavities in primary teeth. J Clin Pediatr Dent. 2002;26(3):263–8.

    Article  PubMed  Google Scholar 

  19. Yamada Y, Hossain M, Nakamura Y, Murakami Y, Matsumoto K. Microleakage of composite resin restoration in cavities prepared by Er:YAG laser irradiation in primary teeth. Eur J Paediatr Dent. 2002;3(1):39–45.

    PubMed  Google Scholar 

  20. Kohara EK, Hossain M, Kimura Y, Matsumoto K, Inoue M, Sasa R. Morphological and microleakage studies of the cavities prepared by Er:YAG laser irradiation in primary teeth. J Clin Laser Med Surg. 2002;20(3):141–7.

    Article  PubMed  Google Scholar 

  21. Borsatto MC, Corona SA, Chinelatti MA, Ramos RP, de Sá Rocha RA, Pecora JD, Palma-Dibb RG. Comparison of marginal microleakage of flowable composite restorations in primary molars prepared by high-speed carbide bur, Er:YAG laser, and air abrasion. J Dent Child (Chic). 2006;73(2):122–6.

    Google Scholar 

  22. Baygin O, Korkmaz FM, Arslan I. Effects of different types of adhesive systems on the microleakage of compomer restorations in Class V cavities prepared by Er,Cr:YSGG laser in primary teeth. Dent Mater J. 2012;31(2):206–14.

    Article  PubMed  Google Scholar 

  23. Ghandehari M, Mighani G, Shahabi S, Chiniforush N, Shirmohammadi Z. Comparison of Microleakage of Glass Ionomer Restoration in Primary Teeth Prepared by Er: YAG Laser and the Conventional Method. J Dent, Tehran University of Medical Sciences, Tehran, Iran. 2012;9(3):215–20.

    Google Scholar 

  24. Baghalian A, Nakhjavani YB, Hooshmand T, Motahhary P, Bahramian H. Microleakage of Er:YAG laser and dental bur prepared cavities in primary teeth restored with different adhesive restorative materials. Lasers Med Sci. 2013;28:1453–60.

    Article  PubMed  Google Scholar 

  25. Bahrololoomi Z, Heydari E. Assessment of tooth preparation via Er:YAG laser and bur on microleakage of dentine adhesives. J Dent, Tehran University of medical Sciences. 2014;11(2):172–8.

    Google Scholar 

  26. Arapostathis KN. An in vitro study comparing cavity preparation by Er:YAG, Er,Cr:YSGG lasers and diamond bur on primary molars: effect on microleakage of three different restorative materials and scanning electron microscopy examination of the cavity preparation. Thesis of Master of Science in Lasers Dentistry, Genoa, Italy, 2014.

    Google Scholar 

  27. AAPD. Clinical Practice Guidelines on pulp therapy for primary and immature permanent teeth. (http://www.aapd.org/policies/quidelines) Reference manual 2015–16. Pediatr Dent. 2015;37(6):244–52.

  28. AAPD. Oral health polices on Policy on Interim Therapeutic Restorations (ITR). (http://www.aapd.org/policies/quidelines) Reference manual 2015-16. Pediatr Dent. 2015;37(6):48–9.

  29. AAPD. Oral health polices. Policy on the Use of Lasers for Pediatric Dental Patients. (http://www.aapd.org/policies/quidelines) Reference manual 2015–16. Pediatr Dent. 2015;37(6):79–81.

  30. Farooq NS, Coll JA, Kuwabara A, Shelton P. Success rates of formocresol pulpotomy and indirect pupl therapy in the treatment of deep deantinal caries in primary teeth. Pediatr Dent. 2000;22(4):278–86.

    PubMed  Google Scholar 

  31. Parisay I, Ghoddusi J, Forghani M. A review on vital pulp therapy in primary teeth. Iran Endod J. 2015;10(1):6–15.. Epub 2014 Dec 24. Review

    PubMed  Google Scholar 

  32. Olivi G, Magnolis FS, Genovese MD. Endodontics, Chapter 8. In:Pediatric laser dentistry. A user’s guide. Chicago: Quintessence Publishing Co, Inc; 2011.

    Google Scholar 

  33. Kotsanos N, Arapostathis KN, Arhakis A, Menexes G. Direct pulp capping of carious primary molars. A specialty practice based study. J Clin Pediatr Dent. 2014;38(4):307–12.

    Google Scholar 

  34. De Coster P, Rajasekharan S, Martens L. Laser-assisted pulpotomy in primary teeth: a systematic review. Int J Paediatr Dent. 2013;23(6):389–99.. Epub 2012 Nov 22. Review

    PubMed  Google Scholar 

  35. Uloopi KS, Vinay C, Ratnaditya A, Gopal AS, Mrudula KJ, Rao RC. Clinical evaluation of low level Diode Laser application for primary teeth pulpotomy. J Clin Diagn Res. 2016;10(1):ZC67–70.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu JF. Effects of Nd:YAG laser pulpotomy on human primary molars. J Endod. 2006;32:404–7.

    Article  PubMed  Google Scholar 

  37. Saltzman B, Sigal M, Clokie C, Rukavina J, Titley K, Kulkarni GV. Assessment of a novel alternative to conventional formocresol-zinc oxide eugenol pulpotomy for the treatment of pulpally involved human primary teeth: diode laser-mineral trioxide aggregate pulpotomy. Int J Paediatr Dent. 2005;15:437–47.

    Article  PubMed  Google Scholar 

  38. Gupta G, Rana V, Srivastava N, Chandna P. Laser pulpotomy–an effective alternative to conventional techniques: a 12 months clinicoradiographic study. Int J Clin Paediatr Dent. 2015;8(1):18–21.

    Article  Google Scholar 

  39. Durmus B, Tanboga I. In vivo evaluation of the treatment outcome of pulpotomy in primary molars using Diode Laser, Formocresol, and Ferric Sulphate. Photomed Laser Surg. 2014;32(5):289–95.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yadav P, Indushekar K, Saraf B, Sheoran N, Sardana D. Comparative evaluation of Ferric Sulfate, Electrosurgical and Diode Laser on human primary molars pulpotomy: an «in-vivo» study. Laser Ther. 2014;23(1):41–7.

    Google Scholar 

  41. Niranjani K, Prasad MG, Vasa AA, Divya G, Thakur MS, Saujanya K. Clinical evaluation of success of primary teeth pulpotomy using Mineral Trioxide Aggregate(®), Laser and Biodentine(TM)- an In Vivo Study. J Clin Diagn Res. 2015;9(4):ZC35–7.

    PubMed  PubMed Central  Google Scholar 

  42. Subbaiah R. Bacterial efficacy of Ca(oH)2 against E.faecalis compared with three dental lasers on root canal Dentin- an invitro study. J Clin Diagn Res: JCDR. 2014;8(11):ZC135–7.

    PubMed  PubMed Central  Google Scholar 

  43. Rebecca G, et al. Er:YAG 2,940-nm laser fiber in endodontic treatment: a help in removing smear layer. Lasers Med Sci. 2014;29(1):69–75.

    Article  Google Scholar 

  44. Pedullà E, et al. Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study. Int Endod J. 2012;45:865–70.

    Article  PubMed  Google Scholar 

  45. Shoaib H. Bactericidal efficacy of photodynamic therapy against Enterococcus faecalis in infected root canals: a systematic literature review. Photodiagnosis Photodyn Ther. 2013;10(4):632–43.

    Article  Google Scholar 

  46. Vahid Z. Antimicrobial efficacy of photodynamic therapy and sodium hypochlorite on monoculture biofilms of Enterococcus faecalis at different stages of development. Photomed Laser Surg. 2014;32(5):245–51.

    Article  Google Scholar 

  47. Pinheiro SL, et al. Photodynamic therapy in endodontic treatment of deciduous teeth. Lasers Med Sci. 2009;24(4):521–6.

    Article  PubMed  Google Scholar 

  48. Pinheiro SL, et al. Manual and rotary instrumentation ability to reduce Enterococcus faecalis associated with photodynamic therapy in deciduous molars. Braz Dent J. 2014;25(6):502–7.

    Article  PubMed  Google Scholar 

  49. de Sant’Anna G. Photodynamic therapy for the endodontic treatment of a traumatic primary tooth in a diabetic pediatric patient. J Dent Res Dent Clin Dent Prospects. 2014;8(1):56–60.

    PubMed  PubMed Central  Google Scholar 

  50. da Silva Barbosa P, et al. Photodynamic therapy in pediatric dentistry. Case Rep Dent. 2014;2014:217172.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Arapostathis DDS, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arapostathis, K. (2017). Laser-Assisted Pediatric Dentistry. In: Coluzzi, D., Parker, S. (eds) Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-51944-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51944-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51943-2

  • Online ISBN: 978-3-319-51944-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics