Advertisement

Modeling and Performance Comparison of Caching Strategies for Popular Contents in Internet

  • Natalia M. Markovich
  • Vladimir Khrenov
  • Udo R. Krieger
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 678)

Abstract

The paper is devoted to caching of popular multimedia and Web contents in Internet. We study the Cluster Caching Rule (CCR) recently proposed by the authors. It is based on the idea to store only popular contents arising in clusters of related popularity processes. Such clusters defined as consecutive exceedances of popularity indices over a high threshold are caused by dependence in the inter-request times of the objects and, hence, their related popularity processes. We compare CCR with the well-known Time-To-Live (TTL) and Least-Recently-Used (LRU) caching schemes. We model the request process for objects as a mixture of Poisson and Markov processes with a heavy-tailed noise. We focus on the hit probability as a main characteristic of a caching rule and introduce cache effectiveness as a new metric. Then the dependence of the hit probability on the cache size is studied by simulation.

Keywords

Caching Cluster Caching Rule TTL LRU Hit/miss probability Popularity process Clusters of exceedances Inter-request times 

Notes

Acknowledgments

The first author acknowledges the financial support by DAAD scholarship 91619901.

References

  1. 1.
    Che, H., Tung, Y., Wang, Z.: Hierarchical web caching systems: modeling, design and experimental results. IEEE JSAC 20(7), 1305–1314 (2002)Google Scholar
  2. 2.
    Lee, D., Choi, J., Kim, J.-H., Noh, S.H., Min, S.L., Cho, Y., Kim, C.S.: LRFU: a spectrum of policies that subsumes the least recently used and least frequently used policies. IEEE Trans. Comput. 50(12), 1352–1362 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berger, D.S., Gland, P., Singla, S., Ciucu, F.: Exact analysis of TTL cache networks: the case of caching policies driven by stopping times. In: 2014 ACM International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2014, pp. 595–596 (2014)Google Scholar
  4. 4.
    Fofack, N.C., Nain, P., Neglia, G., Towsley, D.: Analysis of TTL-based cache networks. In: 6th International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS), pp. 1–10 (2012)Google Scholar
  5. 5.
    Friecker, C., Robert, P., Roberts, J.: A versatile and accurate approximation for LRU cache performance. In: Proceedings of ITC 2012, pp. 1–8 (2012)Google Scholar
  6. 6.
    Markovich, N.M.: Modeling clusters of extreme values. Extremes 17(1), 97–125 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Markovich, N.: A cluster caching rule in next generation networks. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 305–313. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30843-2_32 CrossRefGoogle Scholar
  8. 8.
    Markovich, N.M., Krieger, U.R.: A caching policy driven by clusters of high popularity. In: 7th IEEE International Workshop on TRaffic Analysis and Characterization (TRAC 2016), 5–9 September, Paphos, Cyprus (2016)Google Scholar
  9. 9.
    Rizzo, L., Vicisano, L.: Replacement policies for a proxy cache. IEEE/ACM Trans. Netw. 8(2), 158–170 (2000)CrossRefGoogle Scholar
  10. 10.
    Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: evidence and implications. In: IEEE Proceedings of Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 1999), vol. 1, pp. 126–134 (1999)Google Scholar
  11. 11.
    Jelenković, P.R., Radovanović, A.: The persistent-access-caching algorithms. Random Struct. Algorithms 33, 219–251 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jelenković, P.R.: Asymptotic approximation of the move-to-front search cost distribution and least-recently-used caching fault probabilities. Ann. Appl. Probab. 9, 430–464 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jelenković, P.R., Radovanović, A.: Least-recently-used caching with dependent requests. Theor. Comput. Sci. 326(1–3), 293–327 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jelenković, P.R., Radovanović, A.: Asymptotic optimality of the static frequency caching in the presence of correlated requests. Oper. Res. Lett. 37(5), 307–311 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Osogami, T.: A fluid limit for a cache algorithm with general request processes. Adv. Appl. Probab. 42, 816–833 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dehghan, M., Massoulie, L., Towsley, D., Menasche, D., Tay, Y.C.: A utility optimization approach to network cache design, pp. 1–11 (2016). arXiv: 1601.06838v1
  17. 17.
    Ferro, C.A.T., Segers, J.: Inference for clusters of extreme values. J. Roy. Statist. Soc. Ser. B 65, 545–556 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Leadbetter, M.R., Lingren, G., Rootzén, H.: Extremes and Related Properties of Random Sequence and Processes. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  19. 19.
    Großmann, M., Eiermann, A., Renner, M.: Hypriot cluster lab: an ARM-powered cloud solution utilizing docker. In: 23rd International Conference on Telecommunications (ICT 2016), 16–18 May, Thessaloniki, Greece (2016)Google Scholar
  20. 20.
    Großmann, M., Eiermann, A.: Security of distributed container based service clustering with hypriot cluster lab. In: Proceedings of ITC 28, September 12–16, Würzburg, Germany (2016)Google Scholar
  21. 21.
    Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology review. In: 3rd International Conference on Future Internet of Things and Cloud (FiCloud), 24–26 August 2015, pp. 379–386 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Natalia M. Markovich
    • 1
  • Vladimir Khrenov
    • 1
  • Udo R. Krieger
    • 2
  1. 1.V.A. Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Fakultät WIAI, Otto-Friedrich-UniversitätBambergGermany

Personalised recommendations