Skip to main content

Diagram Representation for the Stochastization of Single-Step Processes

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 678))

Abstract

Background. By the means of the method of stochastization of one-step processes we get the simplified mathematical model of the original stochastic system. We can explore these models by standard methods, as opposed to the original system. The process of stochastization depends on the type of the system under study. Purpose. We want to get a unified abstract formalism for stochastization of one-step processes. This formalism should be equivalent to the previously introduced. Methods. To unify the methods of construction of the master equation, we propose to use the diagram technique. Results. We get a diagram technique, which allows to unify getting master equation for the system under study. We demonstrate the equivalence of the occupation number representation and the state vectors representation by using a Verhulst model. Conclusions. We have suggested a convenient diagram formalism for unified construction of stochastic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The analogs of the interaction schemes are the equations of chemical kinetics, reaction particles and etc.

  2. 2.

    In quantum field theory the path integrals approach can be considered as an analogue of the combinatorial approach and the method of second quantization as analog of the operator approach.

  3. 3.

    We denote the module over the field \(\mathbb {R}\) as \(\mathfrak {R}\). Accordingly, \(\mathfrak {N}\), \(\mathfrak {N}_{0}\), \(\mathfrak {N}_{+}\) are modules over rings \(\mathbb {N}\), \(\mathbb {N}_{0}\) (cardinal numbers with 0), \(\mathbb {N}_{+}\) (cardinal numbers without 0).

  4. 4.

    The component dimension indices take on values \(\underline{{i}},\underline{{j}} = \overline{1,n}\).

  5. 5.

    The component indices of number of interactions take on values \(\underline{{\alpha }} = \overline{1,s}\).

  6. 6.

    Master equation can be considered as an implementation of the Kolmogorov equation. However, the master equation is more convenient and has an immediate physical interpretation (see [18]).

  7. 7.

    The notation is based on the notation, proposed by G. Grassmann in 1862 (see [2, p. 134]).

  8. 8.

    In this case, we use Hermitian conjugation \({\bullet }^{\dagger }\). The sign of the complex conjugate \({\bullet }^{*}\) in this case is superfluous.

  9. 9.

    In fact, \(a\pi |{n}\rangle - \pi a |{n}\rangle = (n+1)|{n}\rangle - n |{n}\rangle = |{n}\rangle \).

  10. 10.

    In order not to clutter the diagram, we have only one type of interacting entities left in these schemes.

  11. 11.

    In normal ordering product all creation operators are moved so as to be always to the left of all the annihilation operators.

  12. 12.

    The attractiveness of this model is that it is one-dimensional and non-linear.

  13. 13.

    The same notation as in the original model [25] is used.

References

  1. Basharin, G.P., Samouylov, K.E., Yarkina, N.V., Gudkova, I.A.: A new stage in mathematical teletraffic theory. Autom. Remote Control 70(12), 1954–1964 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cajori, F.: A History of Mathematical Notations, vol. 2 (1929)

    Google Scholar 

  3. Demidova, A.V., Korolkova, A.V., Kulyabov, D.S., Sevastianov, L.A.: The method of stochastization of one-step processes. In: Mathematical Modeling and Computational Physics, p. 67, JINR, Dubna (2013)

    Google Scholar 

  4. Demidova, A.V., Korolkova, A.V., Kulyabov, D.S., Sevastyanov, L.A.: The method of constructing models of peer to peer protocols. In: 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 557–562. IEEE Computer Society (2015)

    Google Scholar 

  5. Dirac, P.A.M.: A new notation for quantum mechanics. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 35, no. 03, p. 416 (1939)

    Google Scholar 

  6. Doi, M.: Second quantization representation for classical many-particle system. J. Phys. A: Math. Gen. 9(9), 1465–1477 (1976)

    Article  Google Scholar 

  7. Doi, M.: Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen. 9(9), 1479–1495 (1976)

    Article  Google Scholar 

  8. Feller, W.: Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung. Acta Biotheor. 5(1), 11–40 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feller, W.: On the theory of stochastic processes, with particular reference to applications. In: Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability, pp. 403–432 (1949)

    Google Scholar 

  10. Gardiner, C.W.: Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics, Springer, Heidelberg (1985)

    Google Scholar 

  11. Gorban, A.N., Yablonsky, G.S.: Three waves of chemical dynamics. Math. Model. Nat. Phenom. 10(5), 1–5 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grassberger, P., Scheunert, M.: Fock-space methods for identical classical objects. Fortschr. Phys. 28(10), 547–578 (1980)

    Article  MathSciNet  Google Scholar 

  13. Hnatič, M., Eferina, E.G., Korolkova, A.V., Kulyabov, D.S., Sevastyanov, L.A.: Operator approach to the master equation for the one-step process. In: EPJ Web of Conferences, vol. 108, p. 02027 (2016)

    Google Scholar 

  14. Hnatič, M., Honkonen, J., Lučivjanský, T.: Field-theoretic technique for irreversible reaction processes. Phys. Part. Nuclei 44(2), 316–348 (2013)

    Article  Google Scholar 

  15. Hnatich, M., Honkonen, J.: Velocity-fluctuation-induced anomalous kinetics of the \(A+A\rightarrow \) reaction. Phys. Rev. E, 3904–3911 (2000). Statistical physics, plasmas, fluids, and related interdisciplinary topics 61(4 Pt A)

    Google Scholar 

  16. Hnatich, M., Honkonen, J., Lučivjanský, T.: Field theory approach in kinetic reaction: role of random sources and sinks. Theoret. Math. Phys. 169(1), 1489–1498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Janssen, H.K., Täuber, U.C.: The field theory approach to percolation processes. Ann. Phys. 315(1), 147–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier Science, North-Holland Personal Library, Amsterdam (2011)

    Google Scholar 

  19. Korolkova, A.V., Eferina, E.G., Laneev, E.B., Gudkova, I.A., Sevastianov, L.A., Kulyabov, D.S.: Stochastization of one-step processes in the occupations number representation. In: Proceedings - 30th European Conference on Modelling and Simulation, ECMS 2016, pp. 698–704 (2016)

    Google Scholar 

  20. Mobilia, M., Georgiev, I.T., Täuber, U.C.: Fluctuations and correlations in lattice models for predator-prey interaction. Phys. Rev. E 73(4), 040903 (2006)

    Article  Google Scholar 

  21. Peliti, L.: Path integral approach to birth-death processes on a lattice. J. de Phys. 46(9), 1469–1483 (1985)

    Article  MathSciNet  Google Scholar 

  22. Penrose, R., Rindler, W.: Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, vol. 1. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  23. Täuber, U.C.: Field-theory approaches to nonequilibrium dynamics. In: Ageing and the Glass Transition, vol. 716, pp. 295–348. Springer, Heidelberg (2005)

    Google Scholar 

  24. Velieva, T.R., Korolkova, A.V., Kulyabov, D.S.: Designing installations for verification of the model of active queue management discipline RED in the GNS3. In: 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 570–577. IEEE Computer Society (2015)

    Google Scholar 

  25. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement, vol. 10 (1838)

    Google Scholar 

  26. Waage, P., Gulberg, C.M.: Studies concerning affinity. J. Chem. Educ. 63(12), 1044 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially supported by RFBR grants No’s. 14-01-00628, 15-07-08795, and 16-07-00556. Also the publication was supported by the Ministry of Education and Science of the Russian Federation (the Agreement No. 02.a03.21.0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Kulyabov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Eferina, E.G., Hnatich, M., Korolkova, A.V., Kulyabov, D.S., Sevastianov, L.A., Velieva, T.R. (2016). Diagram Representation for the Stochastization of Single-Step Processes. In: Vishnevskiy, V., Samouylov, K., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2016. Communications in Computer and Information Science, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-319-51917-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51917-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51916-6

  • Online ISBN: 978-3-319-51917-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics