Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coba V, Whitmill M, Mooney R et al (2011) Resuscitation bundle compliance in severe sepsis and septic shock: improves survival, is better late than never. J Intensive Care Med 26:304–313

    Article  PubMed  Google Scholar 

  2. Brotfain E, Koyfman L, Toledano R et al (2016) Positive fluid balance as a major predictor of clinical outcome of patients with sepsis/septic shock after discharge from intensive care unit. Am J Emerg Med 34:2122–2126

    Article  PubMed  Google Scholar 

  3. Berlin D, Bakker J (2015) Starling curves and central venous pressure. Crit Care 19:55

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boyd J, Sirounis D, Maizel J, Slama M (2016) Echocardiography as a guide for fluid management. Crit Care 20:274

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marik P, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    Article  PubMed  Google Scholar 

  6. Vincent J, Quintairos E, Couto L, Taccone FS (2016) The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 20:257

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jansen TC, van Bommel J, Schoonderbeek FJ et al (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 182:752–761

    Article  PubMed  Google Scholar 

  8. Hernandez G, Luengo C, Bruhn A et al (2014) When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care 4:30

    Article  PubMed  PubMed Central  Google Scholar 

  9. Levy B (2006) Lactate and shock state: the metabolic view. Curr Opin Crit Care 12:315–321

    Article  PubMed  Google Scholar 

  10. Ospina-Tascon GA, Umana G, Bermudez W et al (2015) Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 41:796–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ait-Oufella H, Bourcier S, Alves M et al (2013) Alteration of skin perfusion in mottling area during septic shock. Ann Intensive Care 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brunauer A, Kokofer A, Bataar O et al (2016) Changes in peripheral perfusion relate to visceral organ perfusion in early septic shock: A pilot study. J Crit Care 35:105–109

    Article  PubMed  Google Scholar 

  13. Magder S (2015) Understanding central venous pressure: not a preload index? Curr Opin Crit Care 21:369–375

    Article  PubMed  Google Scholar 

  14. Magder S, Bafaqeeh F (2007) The clinical role of central venous pressure measurements. J Intensive Care Med 22:44–51

    Article  PubMed  Google Scholar 

  15. Heenen S, De Backer D, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10:R102

    Article  PubMed  PubMed Central  Google Scholar 

  16. Teboul JL, Monnet X (2009) Detecting volume responsiveness and unresponsiveness in intensive care unit patients: two different problems, only one solution. Crit Care 13:175

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086

    Article  PubMed  Google Scholar 

  18. Cecconi M, Hofer C, Teboul JL et al (2015) Fluid challenges in intensive care: the FENICE study: A global inception cohort study. Intensive Care Med 41:1529–1537

    Article  PubMed  PubMed Central  Google Scholar 

  19. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  20. Cherpanath TG, Lagrand WK, Schultz MJ, Groeneveld AB (2013) Cardiopulmonary interactions during mechanical ventilation in critically ill patients. Neth Heart J 21:166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29:352–360

    Article  PubMed  Google Scholar 

  22. Monnet X, Teboul JL (2015) Passive leg raising: five rules, not a drop of fluid! Crit Care 19:18

    Article  PubMed  PubMed Central  Google Scholar 

  23. Monnet X, Rienzo M, Osman D et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407

    Article  PubMed  Google Scholar 

  24. Vieillard-Baron A, Chergui K, Rabiller A et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739

    Article  PubMed  Google Scholar 

  25. Charbonneau H, Riu B, Faron M et al (2014) Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters. Crit Care 18:473

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barbier C, Loubieres Y, Schmit C et al (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30:1740–1746

    PubMed  Google Scholar 

  27. Corl K, Napoli AM, Gardiner F (2012) Bedside sonographic measurement of the inferior vena cava caval index is a poor predictor of fluid responsiveness in emergency department patients. Emerg Med Australas 24:534–539

    Article  PubMed  Google Scholar 

  28. Muller L, Bobbia X, Toumi M et al (2012) Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care 16:R188

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lanspa MJ, Grissom CK, Hirshberg EL, Jones JP, Brown SM (2013) Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock: reply. Shock 39:462

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837

    Article  PubMed  Google Scholar 

  31. Dipti A, Soucy Z, Surana A, Chandra S (2012) Role of inferior vena cava diameter in assessment of volume status: a meta-analysis. Am J Emerg Med 30:1414–1419.e1411

    Article  PubMed  Google Scholar 

  32. Brennan JM, Ronan A, Goonewardena S et al (2006) Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin J Am Soc Nephrol 1:749–753

    Article  PubMed  Google Scholar 

  33. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  PubMed  Google Scholar 

  34. Lopes MR, Oliveira MA, Pereira VO et al (2007) Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 11:R100

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mahjoub Y, Pila C, Friggeri A et al (2009) Assessing fluid responsiveness in critically ill patients: False-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med 37:2570–2575

    Article  PubMed  Google Scholar 

  36. Feissel M, Michard F, Mangin I et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873

    Article  CAS  PubMed  Google Scholar 

  37. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  38. Ornato JP, Garnett AR, Glauser FL (1990) Relationship between cardiac output and the end-tidal carbon dioxide tension. Ann Emerg Med 19:1104–1106

    Article  CAS  PubMed  Google Scholar 

  39. Jacquet-Lagreze M, Baudin F, David JS et al (2016) End-tidal carbon dioxide variation after a 100- and a 500-ml fluid challenge to assess fluid responsiveness. Ann Intensive Care 6:37

    Article  PubMed  PubMed Central  Google Scholar 

  40. Monnet X, Osman D, Ridel C et al (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–956

    Article  PubMed  Google Scholar 

  41. Klijn E, Velzen MH, Lima AP et al (2015) Tissue perfusion and oxygenation to monitor fluid responsiveness in critically ill, septic patients after initial resuscitation: a prospective observational study. J Clin Monit Comput 29:707–712

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gruartmoner G, Mesquida J, Ince C (2015) Fluid therapy and the hypovolemic microcirculation. Curr Opin Crit Care 21:276–284

    Article  CAS  PubMed  Google Scholar 

  43. Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC (2013) Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med 39:612–619

    Article  CAS  PubMed  Google Scholar 

  44. Ospina-Tascon G, Neves A, Occhipinti G et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36:949–955

    Article  PubMed  Google Scholar 

  45. Vellinga NA, Ince C, Boerma EC (2013) Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  46. Monge Garcia MI, Guijo Gonzalez P, Gracia Romero M et al (2015) Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med 41:1247–1255

    Article  CAS  PubMed  Google Scholar 

  47. Aya HD, Ster IC, Fletcher N et al (2016) Pharmacodynamic analysis of a fluid challenge. Crit Care Med 44:880–891

    Article  CAS  PubMed  Google Scholar 

  48. van Genderen ME, Engels N, van der Valk RJ et al (2015) Early peripheral perfusion-guided fluid therapy in patients with septic shock. Am J Respir Crit Care Med 191:477–480

    Article  PubMed  Google Scholar 

  49. Georger JF, Hamzaoui O, Chaari A et al (2010) Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med 36:1882–1889

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mukherjee, V., Brosnahan, S.B., Bakker, J. (2017). How to Use Fluid Responsiveness in Sepsis. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2017. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-51908-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51908-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51907-4

  • Online ISBN: 978-3-319-51908-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics