Skip to main content

Novel Metabolic Substrates for Feeding the Injured Brain

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2017

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ponsford JL, Downing MG, Olver J et al (2014) Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J Neurotrauma 31:64–77

    Article  PubMed  Google Scholar 

  2. Jain KK (2008) Neuroprotection in traumatic brain injury. Drug Discov Today 13:1082–1089

    Article  CAS  PubMed  Google Scholar 

  3. Cahill GF Jr, Veech RL (2003) Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 114:149

    PubMed  PubMed Central  Google Scholar 

  4. Reilly P, Bullock R (1997) Head Injury: Pathophysiology and Management of Severe Closed Injury. Chapman & Hall Medical, London

    Google Scholar 

  5. Owen OE, Caprio S, Reichard GA et al (1983) Ketosis of starvation: a revisit and new perspectives. Clin Endocrinol Metab 12:359–379

    Article  CAS  PubMed  Google Scholar 

  6. Jalloh I, Carpenter KLH, Helmy A et al (2015) Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings. Metab Brain Dis 30:615–632

    Article  CAS  PubMed  Google Scholar 

  7. Dash PK, Zhao J, Hergenroeder G et al (2010) Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurother J Am Soc Exp Neurother 7:100–114

    Article  CAS  Google Scholar 

  8. Andriessen TMJC, Jacobs B, Vos PE (2010) Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 14:2381–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cederberg D, Siesjö P (2010) What has inflammation to do with traumatic brain injury? Childs Nerv Syst 26:221–226

    Article  PubMed  Google Scholar 

  10. Meierhans R, Brandi G, Fasshauer M et al (2012) Arterial lactate above 2 mM is associated with increased brain lactate and decreased brain glucose in patients with severe traumatic brain injury. Minerva Anestesiol 78:185–193

    CAS  PubMed  Google Scholar 

  11. Glenn TC, Kelly DF, Boscardin WJ et al (2003) Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 23:1239–1250

    Article  CAS  PubMed  Google Scholar 

  12. Jalloh I, Helmy A, Shannon RJ et al (2013) Lactate uptake by the injured human brain: evidence from an arteriovenous gradient and cerebral microdialysis study. J Neurotrauma 30:2031–2037

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vespa PM, McArthur D, O’Phelan K et al (2003) Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 23:865–877

    Article  CAS  PubMed  Google Scholar 

  14. Stein NR, McArthur DL, Etchepare M et al (2012) Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care 17:49–57

    Article  PubMed  Google Scholar 

  15. Nortje J, Coles JP, Timofeev I et al (2008) Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 36:273–281

    Article  CAS  PubMed  Google Scholar 

  16. Bouteldja N, Andersen LT, Møller N et al (2014) Using positron emission tomography to study human ketone body metabolism: A review. Metabolism 63:1375–1384

    Article  CAS  PubMed  Google Scholar 

  17. Marino S, Ciurleo R, Bramanti P et al (2011) 1H-MR spectroscopy in traumatic brain injury. Neurocrit Care 14:127–133

    Article  PubMed  Google Scholar 

  18. Pan JW, Rothman DL, Behar KL et al (2000) Human brain β-hydroxybutyrate and lactate increase in fasting-induced ketosis. J Cereb Blood Flow Metab 20:1502–1507

    Article  CAS  PubMed  Google Scholar 

  19. Fukao T, Lopaschuk GD, Mitchell GA (2004) Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 70:243–251

    Article  CAS  PubMed  Google Scholar 

  20. Owen OE, Morgan AP, Kemp HG et al (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 70:309–319

    Article  CAS  PubMed  Google Scholar 

  22. Prins ML (2008) Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab 28:1–16

    Article  CAS  PubMed  Google Scholar 

  23. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF Jr (2001) Ketone bodies, potential therapeutic uses. IUBMB Life 51:241–247

    Article  CAS  PubMed  Google Scholar 

  24. Paoli A, Bianco A, Damiani E et al (2014) Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int 2014:474296

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stafstrom CE, Rho JM (2012) The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 3:59

    Article  PubMed  PubMed Central  Google Scholar 

  26. Otto C, Kaemmerer U, Illert B et al (2008) Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8:122

    Article  PubMed  PubMed Central  Google Scholar 

  27. Freeman JM, Vining EPG, Pillas DJ et al (1998) The efficacy of the ketogenic diet – 1998: A prospective evaluation of intervention in 150 children. Pediatrics 102:1358–1363

    Article  CAS  PubMed  Google Scholar 

  28. Neal EG, Chaffe H, Schwartz RH et al (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506

    Article  PubMed  Google Scholar 

  29. Schönfeld P, Reiser G (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? – Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 33:1493–1499

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schönfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45:231–241

    Article  PubMed  Google Scholar 

  31. Veech RL (1991) Metabolism of lactate. NMR Biomed 4:53–58

    Article  CAS  PubMed  Google Scholar 

  32. Bouzat P, Oddo M (2014) Lactate and the injured brain: friend or foe? Curr Opin Crit Care 20:133–140

    Article  PubMed  Google Scholar 

  33. Barros LF (2013) Metabolic signaling by lactate in the brain. Trends Neurosci 36:396–404

    Article  CAS  PubMed  Google Scholar 

  34. Quintard H, Patet C, Zerlauth J-B et al (2016) Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma 33:681–687

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pinto FCG, Capone-Neto A, Prist R et al (2006) Volume replacement with lactated Ringer’s or 3% hypertonic saline solution during combined experimental hemorrhagic shock and traumatic brain injury. J Trauma 60:758–763

    Article  CAS  PubMed  Google Scholar 

  36. Rice AC, Zsoldos R, Chen T et al (2002) Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res 928:156–159

    Article  CAS  PubMed  Google Scholar 

  37. Glenn TC, Martin NA, Horning MA et al (2015) Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma 32:820–832

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bouzat P, Sala N, Suys T et al (2014) Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med 40:412–421

    Article  CAS  PubMed  Google Scholar 

  39. Ichai C, Payen J-F, Orban J-C et al (2013) Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med 39:1413–1422

    Article  CAS  PubMed  Google Scholar 

  40. Elkind JA, Lim MM, Johnson BN et al (2015) Efficacy, dosage, and duration of action of branched chain amino Acid therapy for traumatic brain injury. Front Neurol 6:73

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jeter CB, Hergenroeder GW, Ward NH et al (2013) Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels. J Neurotrauma 30:671–679

    Article  PubMed  Google Scholar 

  42. Vuille-Dit-Bille RN, Ha-Huy R, Stover JF (2012) Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury. Amino Acids 43:1287–1296

    Article  CAS  PubMed  Google Scholar 

  43. Cole JT, Mitala CM, Kundu S et al (2010) Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci USA 107:366–371

    Article  CAS  PubMed  Google Scholar 

  44. Ott LG, Schmidt JJ, Young AB et al (1988) Comparison of administration of two standard intravenous amino acid formulas to severely brain-injured patients. Drug Intell Clin Pharm 22:763–768

    CAS  PubMed  Google Scholar 

  45. Aquilani R, Boselli M, Boschi F et al (2008) Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: a pilot study. Arch Phys Med Rehabil 89:1642–1647

    Article  PubMed  Google Scholar 

  46. Aquilani R, Iadarola P, Contardi A et al (2005) Branched-chain amino acids enhance the cognitive recovery of patients with severe traumatic brain injury. Arch Phys Med Rehabil 86:1729–1735

    Article  PubMed  Google Scholar 

  47. Borges K, Sonnewald U (2012) Triheptanoin – A medium chain triglyceride with odd chain fatty acids: A new anaplerotic anticonvulsant treatment? Epilepsy Res 100:239–244

    Article  CAS  PubMed  Google Scholar 

  48. Mochel F, DeLonlay P, Touati G et al (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 84:305–312

    Article  CAS  PubMed  Google Scholar 

  49. Kim TH, Borges K, Petrou S et al (2013) Triheptanoin reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res 103:101–105

    Article  CAS  PubMed  Google Scholar 

  50. Willis S, Stoll J, Sweetman L et al (2010) Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis 40:565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adanyeguh IM, Rinaldi D, Henry P-G et al (2015) Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 84:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwarzkopf TM, Koch K, Klein J (2015) Reduced severity of ischemic stroke and improvement of mitochondrial function after dietary treatment with the anaplerotic substance triheptanoin. Neuroscience 300:201–209

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki M, Suzuki M, Sato K et al (2001) Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 87:143–150

    Article  CAS  PubMed  Google Scholar 

  54. White H, Venkatesh B, Jones M et al (2013) Effect of a hypertonic balanced ketone solution on plasma, CSF and brain beta-hydroxybutyrate levels and acid-base status. Intensive Care Med 39:727–733

    Article  CAS  PubMed  Google Scholar 

  55. Smith SL, Heal DJ, Martin KF (2005) KTX 0101: a potential metabolic approach to cytoprotection in major surgery and neurological disorders. CNS Drug Rev 11:113–140

    Article  CAS  PubMed  Google Scholar 

  56. Clarke K, Tchabanenko K, Pawlosky R et al (2012) Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol 63:401–408

    Article  CAS  PubMed  Google Scholar 

  57. White H, Cook D, Venkatesh B (2006) The use of hypertonic saline for treating intracranial hypertension after traumatic brain injury. Anesth Analg 102:1836–1846

    Article  CAS  PubMed  Google Scholar 

  58. Ritter AM, Robertson CS, Goodman JC et al (1996) Evaluation of a carbohydrate-free diet for patients with severe head injury. J Neurotrauma 13:473–485

    Article  CAS  PubMed  Google Scholar 

  59. Hall TC, Bilku DK, Neal CP et al (2016) The impact of an omega-3 fatty acid rich lipid emulsion on fatty acid profiles in critically ill septic patients. Prostaglandins Leukot Essent Fatty Acids 112:1–11

    Article  CAS  PubMed  Google Scholar 

  60. De Bandt JP, Cynober L (2006) Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis. J Nutr 136:308S–313S

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Venkatesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

White, H., Kruger, P., Venkatesh, B. (2017). Novel Metabolic Substrates for Feeding the Injured Brain. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2017. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-51908-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51908-1_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51907-4

  • Online ISBN: 978-3-319-51908-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics