Skip to main content

Forecasting and Chaos

  • Chapter
  • First Online:
Predictability of Chaotic Dynamics

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 967 Accesses

Abstract

Forecasting is the process of making predictions of the future based on past and present data. One of the key questions of the scientific method is the possibility of making predictions using a model and to confront them with new observations as a test of its goodness. It seems rather natural to think that with an adequate increase in numerical computational facilities, the errors could be neglected and that from a set of initial conditions which are known with enough precision, one could predict the future state of a dynamical system. However, every model has inherent inaccuracies leading its results to deviate from the true solution. Furthermore, the computational issues constitute another source of errors. When a system shows a strong sensitivity to the initial conditions, then the system is chaotic. And when the nonlinearity is present, one prediction can be destroyed by an initial error, even by a very small one. Fortunately, the presence of chaos does not always imply a low predictability. An orbit can be chaotic and still be predictable, in the sense that the chaotic orbit is followed, or shadowed, by a real orbit, thus making its predictions physically valid.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-51893-0_5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 1843, the British mathematician and astronomer John Couch Adams also began to work on the orbit of Uranus using the data he had, and he has been sometimes credited by the discovery of Neptune.

References

  1. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos. An Introduction to Dynamical Systems. Springer, New York (1996)

    Google Scholar 

  2. Bailey, D.H., Barrio, R., Borwein, J.M.: High-precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218, 10106–10121 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bashford, F.: An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid with an Explanation of the Method of Integration Employed in the Tables Which Give the Theoretical Form of Such Drops, by J.C. Adams. Cambridge University Press, Cambridge (1883)

    Google Scholar 

  4. Carmona, R., Hwang, W., Torresani, B.: Wavelet analysis and its applications. In: Practical Time-Frequency Analysis: Continuous Wavelet and Gabor Transforms, with an Implementation in S, vol. 9. Academic, San Diego (1998)

    Google Scholar 

  5. Carpintero, D.D., Aguilar, L.A.: Orbit classification in arbitrary 2D and 3D potentials. Mon. Not. R. Astron. Soc. 298, 21 (1998)

    Article  ADS  Google Scholar 

  6. Cartwright, J.H.E., Oreste, P.: The dynamics of Runge–Kutta methods. Int. J. Bifurcation Chaos 2, 427 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chandre, C., Wiggins, S., Uzer, T.: Time-frequency analysis of chaotic systems. Physica D: Nonlinear Phenom. 181, 171 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cincotta, P.M., Simo, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials. Astron. Astrophys. 147, 205 (2000)

    ADS  Google Scholar 

  9. Flaschka, H.: The toda lattice. II. Existence of integrals. Phys. Rev. B 9, 1924 (1974)

    Google Scholar 

  10. Froeschlé, C., Lega, E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitivity tool. Celest. Mech. Dyn. Astron. 78, 167 (2000)

    Google Scholar 

  11. Gerlach, E., Skokos, Ch.: Comparing the efficiency of numerical techniques for the integration of variational equations. Discr. Cont. Dyn. Sys.-Supp. September, 475–484 (2011)

    Google Scholar 

  12. Gustavson, F.G.: Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point. Astron. J. 71, 670 (1966)

    Article  ADS  Google Scholar 

  13. Hairer, E.: A Runge-Kutta methods of order 10. J. Inst. Math. Appl. 21, 47 (1978)

    Article  MathSciNet  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996). ISBN 978-3-540-60452-5

    Book  MATH  Google Scholar 

  15. Hairer, E., Wanner, G.: Analysis by Its History. Springer, New York (1997)

    MATH  Google Scholar 

  16. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations, I, Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  17. Heggie, D.C.: Chaos in the N-body problem of stellar dynamics. In: Roy, A.E. (ed.) Predictability, Stability and Chaos in N-Body Dynamical Systems. Plenum Press, New York (1991)

    Google Scholar 

  18. Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. Herbst, B.M., Ablowitz, M.J.: Numerically induced chaos in the nonlinear Schroedinger equation. Phys. Rev. Lett. 62, 2065 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  20. Heun, K.: Neue Methode zur approximativen Integration der Differentialgleichungen einer unabhangigen Veranderlichen. Z. Math. Phys. 45, 23 (1900)

    MATH  Google Scholar 

  21. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (1996). ISBN 978-0-521-55655-2

    MATH  Google Scholar 

  22. Kantz, H., Grebogi, C., Prasad, A., Lai, Y.C., Sinde, E.: Unexpected robustness-against-noise of a class of nonhyperbolic chaotic attractors. Phys. Rev. E 65, 026209 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kutta, W.: Beitrag zur naherungweisen Integration totaler Differenialgleichungen. Z. Math. Phys. 46, 435 (1901)

    MATH  Google Scholar 

  24. Lambert, J.D.: The initial value problem for ordinary differential equations. In: Jacobs, D. (ed.) The State of the Art in Numerical Analysis, pp. 451–501. Academic, New York (1977)

    Google Scholar 

  25. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Wiley, New York (1992). ISBN 978-0-471-92990-1

    Google Scholar 

  26. Larsson, S., Sanz-Serna, J.M.: A shadowing result with applications to finite element approximation of reaction-diffusion equations. Math. Comput. 68, 55 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lasagni, F.M.: Canonical Runge-Kutta methods. Z. Angew. Math. Mech. 39, 952 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Li, T., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82 (10), 985 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  30. Milani, A., Nobili, A.M., Knezevic, Z.: Stable chaos in the asteroid belt. Icarus 125, 13 (1997)

    Article  ADS  Google Scholar 

  31. Ott, W., Yorke, J.A.: When Lyapunov exponents fail to exist. Phys. Rev. E 78, 056203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Papaphilippou, Y., Laskar, J.: Global dynamics of triaxial galactic models through frequency map analysis. Astron. Astrophys. 329, 451 (1998)

    ADS  Google Scholar 

  33. Pavani, R.: A two degrees-of-freedom hamiltonian model: an analytical and numerical study. In: Agarwal, R.P., Perera, K. (eds.) Proceedings of the Conference on Differential and Difference Equations and Applications, p. 905. Hindawi, New York (2006)

    Google Scholar 

  34. Penrose, R.: Quantum Implications. Essays in Honour of David Bohm. Routledge and Keegan P., London/New York (1987)

    MATH  Google Scholar 

  35. Penrose, R.: The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physics. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  36. Poincaré, H.: On the three-body problem and the equations of dynamics. Acta Math. 13, 1 (1890)

    MATH  Google Scholar 

  37. Poincaré, H.: Les Méthodes nouvelles de la mécanique céleste. Gauthier-Villars et Fils, Paris (1892)

    MATH  Google Scholar 

  38. Press, W.H.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007). ISBN-10: 0521880688

    MATH  Google Scholar 

  39. Ruelle, D., Takens F.: On the nature of turbulence. Commun. Math. Phys. 20, 167 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Runge, C.: Ueber die numerische Aflosung von Differentialgleichungen. Math. Anal. 46, 167 (1895)

    Article  MATH  Google Scholar 

  41. Sandor, Zs., Erdi, B., Szell, A., Funk, B.: The relative Lyapunov indicator. An efficient method of chaos detection. Celest. Mech. Dyn. Astron. 90, 127 (2004)

    Google Scholar 

  42. Sanz-Serna, J.M.: Runge Kutta schemes for Hamiltonian systems. BIT 28, 877 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sanz-Serna, J.M., Larsson, S.: Shadows, chaos and saddles. Appl. Numer. Math. 13, 449 (1991)

    MathSciNet  MATH  Google Scholar 

  44. Sauer, T., Grebogi, C., Yorke, J.A.: How long do numerical chaotic solutions remain valid? Phys. Lett. A 79, 59 (1997)

    Article  Google Scholar 

  45. Simon, P., de Laplace, M.: A Philosophical Essay on Probabilities, p. 4. Wiley, New York; Chapman and Hall Ltd., London (1902)

    Google Scholar 

  46. Skokos, Ch.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A 34, 10029 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Skokos, Ch.: The Lyapunov characteristic exponents and their computation. Lect. Notes Phys. 790, 63 (2010)

    Article  ADS  Google Scholar 

  48. Skokos, Ch., Bountis, T.C., Antonopoulos, Ch.: Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method. Physica D 231, 30 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Stuchi, T.J.: Symplectic integrators revisited. Braz. J. Phys. 32, 4 (2002)

    Article  Google Scholar 

  50. Suris, Y.B.: Preservation of symplectic structure in the numerical solution of Hamiltonian systems. In: Filippov, S.S. (ed.) Numerical Solution of Differential Equations. Akad. Nauk. SSSR, p. 148. Inst. Prikl. Mat., Moscow (1988)

    Google Scholar 

  51. Szebeheley, V.G., Peters, C.F.: Complete solution of a general problem of three bodies. Astron. J. 72, 876 (1967)

    Article  ADS  Google Scholar 

  52. Szezech Jr., J.D., Schelin, A.B., Caldas, I.L., Lopes, S.R., Morrison, P.J., Viana, R.L.: Finite-time rotation number: a fast indicator for chaotic dynamical structures. Phys. Lett. A 377, 452 (2013)

    Article  ADS  Google Scholar 

  53. Tailleur, J., Kurchan, J.: Probing rare physical trajectories with Lyapunov weighted dynamics. Nature 3, 203 (2007)

    Google Scholar 

  54. Tsiganis, K., Anastasiadis, A., Varvoglis, H.: Dimensionality differences between sticky and non-sticky chaotic trajectory segments in a 3D Hamiltonian system. Chaos Solitons Fractals 11, 2281 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Valluri, M., Merrit, D.: Regular and chaotic dynamics of triaxial stellar systems. Astrophys. J. 506, 686 (1998)

    Article  ADS  Google Scholar 

  56. Viana, R.L., Grebogi, C.: Unstable dimension variability and synchronization of chaotic systems. Phys. Rev. E 62, 462 (2000)

    Article  ADS  Google Scholar 

  57. Voglis, N., Contopoulos, G., Efthymiopoulos, C.: Detection of ordered and chaotic orbits using the dynamical spectra. Celest. Mech. Dyn. Astron. 73, 211 (1999)

    Article  ADS  MATH  Google Scholar 

  58. Wellstead, P.E.: Introduction to Physical System Modelling. Academic, London (1979)

    Google Scholar 

  59. Wisdom, J., Holman, M.: Symplectic maps for the n-body problem, a stability analysis. Astron. J. 104, 2022 (1992)

    Article  ADS  Google Scholar 

  60. Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133, 134 (1988)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vallejo, J.C., Sanjuan, M.A.F. (2017). Forecasting and Chaos. In: Predictability of Chaotic Dynamics . Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-51893-0_1

Download citation

Publish with us

Policies and ethics